This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The interior function on the subsets of a topology's base set. (Contributed by NM, 10-Sep-2006) (Revised by Mario Carneiro, 11-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cldval.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | ntrfval | ⊢ ( 𝐽 ∈ Top → ( int ‘ 𝐽 ) = ( 𝑥 ∈ 𝒫 𝑋 ↦ ∪ ( 𝐽 ∩ 𝒫 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cldval.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | topopn | ⊢ ( 𝐽 ∈ Top → 𝑋 ∈ 𝐽 ) |
| 3 | pwexg | ⊢ ( 𝑋 ∈ 𝐽 → 𝒫 𝑋 ∈ V ) | |
| 4 | mptexg | ⊢ ( 𝒫 𝑋 ∈ V → ( 𝑥 ∈ 𝒫 𝑋 ↦ ∪ ( 𝐽 ∩ 𝒫 𝑥 ) ) ∈ V ) | |
| 5 | 2 3 4 | 3syl | ⊢ ( 𝐽 ∈ Top → ( 𝑥 ∈ 𝒫 𝑋 ↦ ∪ ( 𝐽 ∩ 𝒫 𝑥 ) ) ∈ V ) |
| 6 | unieq | ⊢ ( 𝑗 = 𝐽 → ∪ 𝑗 = ∪ 𝐽 ) | |
| 7 | 6 1 | eqtr4di | ⊢ ( 𝑗 = 𝐽 → ∪ 𝑗 = 𝑋 ) |
| 8 | 7 | pweqd | ⊢ ( 𝑗 = 𝐽 → 𝒫 ∪ 𝑗 = 𝒫 𝑋 ) |
| 9 | ineq1 | ⊢ ( 𝑗 = 𝐽 → ( 𝑗 ∩ 𝒫 𝑥 ) = ( 𝐽 ∩ 𝒫 𝑥 ) ) | |
| 10 | 9 | unieqd | ⊢ ( 𝑗 = 𝐽 → ∪ ( 𝑗 ∩ 𝒫 𝑥 ) = ∪ ( 𝐽 ∩ 𝒫 𝑥 ) ) |
| 11 | 8 10 | mpteq12dv | ⊢ ( 𝑗 = 𝐽 → ( 𝑥 ∈ 𝒫 ∪ 𝑗 ↦ ∪ ( 𝑗 ∩ 𝒫 𝑥 ) ) = ( 𝑥 ∈ 𝒫 𝑋 ↦ ∪ ( 𝐽 ∩ 𝒫 𝑥 ) ) ) |
| 12 | df-ntr | ⊢ int = ( 𝑗 ∈ Top ↦ ( 𝑥 ∈ 𝒫 ∪ 𝑗 ↦ ∪ ( 𝑗 ∩ 𝒫 𝑥 ) ) ) | |
| 13 | 11 12 | fvmptg | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑥 ∈ 𝒫 𝑋 ↦ ∪ ( 𝐽 ∩ 𝒫 𝑥 ) ) ∈ V ) → ( int ‘ 𝐽 ) = ( 𝑥 ∈ 𝒫 𝑋 ↦ ∪ ( 𝐽 ∩ 𝒫 𝑥 ) ) ) |
| 14 | 5 13 | mpdan | ⊢ ( 𝐽 ∈ Top → ( int ‘ 𝐽 ) = ( 𝑥 ∈ 𝒫 𝑋 ↦ ∪ ( 𝐽 ∩ 𝒫 𝑥 ) ) ) |