This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonzero normed ring is a domain. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nrgdomn | ⊢ ( 𝑅 ∈ NrmRing → ( 𝑅 ∈ Domn ↔ 𝑅 ∈ NzRing ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | domnnzr | ⊢ ( 𝑅 ∈ Domn → 𝑅 ∈ NzRing ) | |
| 2 | simpr | ⊢ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ) → 𝑅 ∈ NzRing ) | |
| 3 | eqid | ⊢ ( norm ‘ 𝑅 ) = ( norm ‘ 𝑅 ) | |
| 4 | eqid | ⊢ ( AbsVal ‘ 𝑅 ) = ( AbsVal ‘ 𝑅 ) | |
| 5 | 3 4 | nrgabv | ⊢ ( 𝑅 ∈ NrmRing → ( norm ‘ 𝑅 ) ∈ ( AbsVal ‘ 𝑅 ) ) |
| 6 | 5 | ne0d | ⊢ ( 𝑅 ∈ NrmRing → ( AbsVal ‘ 𝑅 ) ≠ ∅ ) |
| 7 | 6 | adantr | ⊢ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ) → ( AbsVal ‘ 𝑅 ) ≠ ∅ ) |
| 8 | 4 | abvn0b | ⊢ ( 𝑅 ∈ Domn ↔ ( 𝑅 ∈ NzRing ∧ ( AbsVal ‘ 𝑅 ) ≠ ∅ ) ) |
| 9 | 2 7 8 | sylanbrc | ⊢ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ) → 𝑅 ∈ Domn ) |
| 10 | 9 | ex | ⊢ ( 𝑅 ∈ NrmRing → ( 𝑅 ∈ NzRing → 𝑅 ∈ Domn ) ) |
| 11 | 1 10 | impbid2 | ⊢ ( 𝑅 ∈ NrmRing → ( 𝑅 ∈ Domn ↔ 𝑅 ∈ NzRing ) ) |