This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted class abstraction with a common superset. (Contributed by Stefan O'Rear, 12-Sep-2015) (Proof shortened by Mario Carneiro, 8-Nov-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfrab3ss | ⊢ ( 𝐴 ⊆ 𝐵 → { 𝑥 ∈ 𝐴 ∣ 𝜑 } = ( 𝐴 ∩ { 𝑥 ∈ 𝐵 ∣ 𝜑 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfss2 | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ∩ 𝐵 ) = 𝐴 ) | |
| 2 | ineq1 | ⊢ ( ( 𝐴 ∩ 𝐵 ) = 𝐴 → ( ( 𝐴 ∩ 𝐵 ) ∩ { 𝑥 ∣ 𝜑 } ) = ( 𝐴 ∩ { 𝑥 ∣ 𝜑 } ) ) | |
| 3 | 2 | eqcomd | ⊢ ( ( 𝐴 ∩ 𝐵 ) = 𝐴 → ( 𝐴 ∩ { 𝑥 ∣ 𝜑 } ) = ( ( 𝐴 ∩ 𝐵 ) ∩ { 𝑥 ∣ 𝜑 } ) ) |
| 4 | 1 3 | sylbi | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐴 ∩ { 𝑥 ∣ 𝜑 } ) = ( ( 𝐴 ∩ 𝐵 ) ∩ { 𝑥 ∣ 𝜑 } ) ) |
| 5 | dfrab3 | ⊢ { 𝑥 ∈ 𝐴 ∣ 𝜑 } = ( 𝐴 ∩ { 𝑥 ∣ 𝜑 } ) | |
| 6 | dfrab3 | ⊢ { 𝑥 ∈ 𝐵 ∣ 𝜑 } = ( 𝐵 ∩ { 𝑥 ∣ 𝜑 } ) | |
| 7 | 6 | ineq2i | ⊢ ( 𝐴 ∩ { 𝑥 ∈ 𝐵 ∣ 𝜑 } ) = ( 𝐴 ∩ ( 𝐵 ∩ { 𝑥 ∣ 𝜑 } ) ) |
| 8 | inass | ⊢ ( ( 𝐴 ∩ 𝐵 ) ∩ { 𝑥 ∣ 𝜑 } ) = ( 𝐴 ∩ ( 𝐵 ∩ { 𝑥 ∣ 𝜑 } ) ) | |
| 9 | 7 8 | eqtr4i | ⊢ ( 𝐴 ∩ { 𝑥 ∈ 𝐵 ∣ 𝜑 } ) = ( ( 𝐴 ∩ 𝐵 ) ∩ { 𝑥 ∣ 𝜑 } ) |
| 10 | 4 5 9 | 3eqtr4g | ⊢ ( 𝐴 ⊆ 𝐵 → { 𝑥 ∈ 𝐴 ∣ 𝜑 } = ( 𝐴 ∩ { 𝑥 ∈ 𝐵 ∣ 𝜑 } ) ) |