This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Difference of two class abstractions. (Contributed by NM, 23-Oct-2004) (Proof shortened by Andrew Salmon, 26-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | difab | ⊢ ( { 𝑥 ∣ 𝜑 } ∖ { 𝑥 ∣ 𝜓 } ) = { 𝑥 ∣ ( 𝜑 ∧ ¬ 𝜓 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-clab | ⊢ ( 𝑦 ∈ { 𝑥 ∣ ( 𝜑 ∧ ¬ 𝜓 ) } ↔ [ 𝑦 / 𝑥 ] ( 𝜑 ∧ ¬ 𝜓 ) ) | |
| 2 | sban | ⊢ ( [ 𝑦 / 𝑥 ] ( 𝜑 ∧ ¬ 𝜓 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] ¬ 𝜓 ) ) | |
| 3 | df-clab | ⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ [ 𝑦 / 𝑥 ] 𝜑 ) | |
| 4 | 3 | bicomi | ⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ 𝑦 ∈ { 𝑥 ∣ 𝜑 } ) |
| 5 | sbn | ⊢ ( [ 𝑦 / 𝑥 ] ¬ 𝜓 ↔ ¬ [ 𝑦 / 𝑥 ] 𝜓 ) | |
| 6 | df-clab | ⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝜓 } ↔ [ 𝑦 / 𝑥 ] 𝜓 ) | |
| 7 | 5 6 | xchbinxr | ⊢ ( [ 𝑦 / 𝑥 ] ¬ 𝜓 ↔ ¬ 𝑦 ∈ { 𝑥 ∣ 𝜓 } ) |
| 8 | 4 7 | anbi12i | ⊢ ( ( [ 𝑦 / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] ¬ 𝜓 ) ↔ ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ∧ ¬ 𝑦 ∈ { 𝑥 ∣ 𝜓 } ) ) |
| 9 | 1 2 8 | 3bitrri | ⊢ ( ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ∧ ¬ 𝑦 ∈ { 𝑥 ∣ 𝜓 } ) ↔ 𝑦 ∈ { 𝑥 ∣ ( 𝜑 ∧ ¬ 𝜓 ) } ) |
| 10 | 9 | difeqri | ⊢ ( { 𝑥 ∣ 𝜑 } ∖ { 𝑥 ∣ 𝜓 } ) = { 𝑥 ∣ ( 𝜑 ∧ ¬ 𝜓 ) } |