This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Negative doesn't change the norm of a Hilbert space vector. (Contributed by NM, 11-Aug-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | normsub.1 | ⊢ 𝐴 ∈ ℋ | |
| normsub.2 | ⊢ 𝐵 ∈ ℋ | ||
| Assertion | normsubi | ⊢ ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) = ( normℎ ‘ ( 𝐵 −ℎ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | normsub.1 | ⊢ 𝐴 ∈ ℋ | |
| 2 | normsub.2 | ⊢ 𝐵 ∈ ℋ | |
| 3 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 4 | 2 1 | hvsubcli | ⊢ ( 𝐵 −ℎ 𝐴 ) ∈ ℋ |
| 5 | 3 4 | norm-iii-i | ⊢ ( normℎ ‘ ( - 1 ·ℎ ( 𝐵 −ℎ 𝐴 ) ) ) = ( ( abs ‘ - 1 ) · ( normℎ ‘ ( 𝐵 −ℎ 𝐴 ) ) ) |
| 6 | 2 1 | hvnegdii | ⊢ ( - 1 ·ℎ ( 𝐵 −ℎ 𝐴 ) ) = ( 𝐴 −ℎ 𝐵 ) |
| 7 | 6 | fveq2i | ⊢ ( normℎ ‘ ( - 1 ·ℎ ( 𝐵 −ℎ 𝐴 ) ) ) = ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) |
| 8 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 9 | 8 | absnegi | ⊢ ( abs ‘ - 1 ) = ( abs ‘ 1 ) |
| 10 | abs1 | ⊢ ( abs ‘ 1 ) = 1 | |
| 11 | 9 10 | eqtri | ⊢ ( abs ‘ - 1 ) = 1 |
| 12 | 11 | oveq1i | ⊢ ( ( abs ‘ - 1 ) · ( normℎ ‘ ( 𝐵 −ℎ 𝐴 ) ) ) = ( 1 · ( normℎ ‘ ( 𝐵 −ℎ 𝐴 ) ) ) |
| 13 | 4 | normcli | ⊢ ( normℎ ‘ ( 𝐵 −ℎ 𝐴 ) ) ∈ ℝ |
| 14 | 13 | recni | ⊢ ( normℎ ‘ ( 𝐵 −ℎ 𝐴 ) ) ∈ ℂ |
| 15 | 14 | mullidi | ⊢ ( 1 · ( normℎ ‘ ( 𝐵 −ℎ 𝐴 ) ) ) = ( normℎ ‘ ( 𝐵 −ℎ 𝐴 ) ) |
| 16 | 12 15 | eqtri | ⊢ ( ( abs ‘ - 1 ) · ( normℎ ‘ ( 𝐵 −ℎ 𝐴 ) ) ) = ( normℎ ‘ ( 𝐵 −ℎ 𝐴 ) ) |
| 17 | 5 7 16 | 3eqtr3i | ⊢ ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) = ( normℎ ‘ ( 𝐵 −ℎ 𝐴 ) ) |