This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Negative doesn't change the norm of a Hilbert space vector. (Contributed by NM, 11-Aug-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | normsub.1 | |- A e. ~H |
|
| normsub.2 | |- B e. ~H |
||
| Assertion | normsubi | |- ( normh ` ( A -h B ) ) = ( normh ` ( B -h A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | normsub.1 | |- A e. ~H |
|
| 2 | normsub.2 | |- B e. ~H |
|
| 3 | neg1cn | |- -u 1 e. CC |
|
| 4 | 2 1 | hvsubcli | |- ( B -h A ) e. ~H |
| 5 | 3 4 | norm-iii-i | |- ( normh ` ( -u 1 .h ( B -h A ) ) ) = ( ( abs ` -u 1 ) x. ( normh ` ( B -h A ) ) ) |
| 6 | 2 1 | hvnegdii | |- ( -u 1 .h ( B -h A ) ) = ( A -h B ) |
| 7 | 6 | fveq2i | |- ( normh ` ( -u 1 .h ( B -h A ) ) ) = ( normh ` ( A -h B ) ) |
| 8 | ax-1cn | |- 1 e. CC |
|
| 9 | 8 | absnegi | |- ( abs ` -u 1 ) = ( abs ` 1 ) |
| 10 | abs1 | |- ( abs ` 1 ) = 1 |
|
| 11 | 9 10 | eqtri | |- ( abs ` -u 1 ) = 1 |
| 12 | 11 | oveq1i | |- ( ( abs ` -u 1 ) x. ( normh ` ( B -h A ) ) ) = ( 1 x. ( normh ` ( B -h A ) ) ) |
| 13 | 4 | normcli | |- ( normh ` ( B -h A ) ) e. RR |
| 14 | 13 | recni | |- ( normh ` ( B -h A ) ) e. CC |
| 15 | 14 | mullidi | |- ( 1 x. ( normh ` ( B -h A ) ) ) = ( normh ` ( B -h A ) ) |
| 16 | 12 15 | eqtri | |- ( ( abs ` -u 1 ) x. ( normh ` ( B -h A ) ) ) = ( normh ` ( B -h A ) ) |
| 17 | 5 7 16 | 3eqtr3i | |- ( normh ` ( A -h B ) ) = ( normh ` ( B -h A ) ) |