This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of Beran p. 97. (Contributed by NM, 21-Aug-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | normlem1.1 | |- S e. CC |
|
| normlem1.2 | |- F e. ~H |
||
| normlem1.3 | |- G e. ~H |
||
| normlem2.4 | |- B = -u ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) |
||
| normlem3.5 | |- A = ( G .ih G ) |
||
| normlem3.6 | |- C = ( F .ih F ) |
||
| normlem3.7 | |- R e. RR |
||
| Assertion | normlem3 | |- ( ( ( A x. ( R ^ 2 ) ) + ( B x. R ) ) + C ) = ( ( ( F .ih F ) + ( ( ( * ` S ) x. -u R ) x. ( F .ih G ) ) ) + ( ( ( S x. -u R ) x. ( G .ih F ) ) + ( ( R ^ 2 ) x. ( G .ih G ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | normlem1.1 | |- S e. CC |
|
| 2 | normlem1.2 | |- F e. ~H |
|
| 3 | normlem1.3 | |- G e. ~H |
|
| 4 | normlem2.4 | |- B = -u ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) |
|
| 5 | normlem3.5 | |- A = ( G .ih G ) |
|
| 6 | normlem3.6 | |- C = ( F .ih F ) |
|
| 7 | normlem3.7 | |- R e. RR |
|
| 8 | 3 3 | hicli | |- ( G .ih G ) e. CC |
| 9 | 5 8 | eqeltri | |- A e. CC |
| 10 | 7 | recni | |- R e. CC |
| 11 | 10 | sqcli | |- ( R ^ 2 ) e. CC |
| 12 | 9 11 | mulcli | |- ( A x. ( R ^ 2 ) ) e. CC |
| 13 | 1 2 3 4 | normlem2 | |- B e. RR |
| 14 | 13 | recni | |- B e. CC |
| 15 | 14 10 | mulcli | |- ( B x. R ) e. CC |
| 16 | 12 15 | addcomi | |- ( ( A x. ( R ^ 2 ) ) + ( B x. R ) ) = ( ( B x. R ) + ( A x. ( R ^ 2 ) ) ) |
| 17 | 1 | cjcli | |- ( * ` S ) e. CC |
| 18 | 2 3 | hicli | |- ( F .ih G ) e. CC |
| 19 | 17 18 | mulcli | |- ( ( * ` S ) x. ( F .ih G ) ) e. CC |
| 20 | 3 2 | hicli | |- ( G .ih F ) e. CC |
| 21 | 1 20 | mulcli | |- ( S x. ( G .ih F ) ) e. CC |
| 22 | 19 21 | addcli | |- ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) e. CC |
| 23 | 22 10 | mulneg1i | |- ( -u ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) x. R ) = -u ( ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) x. R ) |
| 24 | 4 | oveq1i | |- ( B x. R ) = ( -u ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) x. R ) |
| 25 | 22 10 | mulneg2i | |- ( ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) x. -u R ) = -u ( ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) x. R ) |
| 26 | 23 24 25 | 3eqtr4i | |- ( B x. R ) = ( ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) x. -u R ) |
| 27 | 10 | negcli | |- -u R e. CC |
| 28 | 19 21 27 | adddiri | |- ( ( ( ( * ` S ) x. ( F .ih G ) ) + ( S x. ( G .ih F ) ) ) x. -u R ) = ( ( ( ( * ` S ) x. ( F .ih G ) ) x. -u R ) + ( ( S x. ( G .ih F ) ) x. -u R ) ) |
| 29 | 17 18 27 | mul32i | |- ( ( ( * ` S ) x. ( F .ih G ) ) x. -u R ) = ( ( ( * ` S ) x. -u R ) x. ( F .ih G ) ) |
| 30 | 1 20 27 | mul32i | |- ( ( S x. ( G .ih F ) ) x. -u R ) = ( ( S x. -u R ) x. ( G .ih F ) ) |
| 31 | 29 30 | oveq12i | |- ( ( ( ( * ` S ) x. ( F .ih G ) ) x. -u R ) + ( ( S x. ( G .ih F ) ) x. -u R ) ) = ( ( ( ( * ` S ) x. -u R ) x. ( F .ih G ) ) + ( ( S x. -u R ) x. ( G .ih F ) ) ) |
| 32 | 26 28 31 | 3eqtri | |- ( B x. R ) = ( ( ( ( * ` S ) x. -u R ) x. ( F .ih G ) ) + ( ( S x. -u R ) x. ( G .ih F ) ) ) |
| 33 | 5 | oveq2i | |- ( ( R ^ 2 ) x. A ) = ( ( R ^ 2 ) x. ( G .ih G ) ) |
| 34 | 11 9 33 | mulcomli | |- ( A x. ( R ^ 2 ) ) = ( ( R ^ 2 ) x. ( G .ih G ) ) |
| 35 | 32 34 | oveq12i | |- ( ( B x. R ) + ( A x. ( R ^ 2 ) ) ) = ( ( ( ( ( * ` S ) x. -u R ) x. ( F .ih G ) ) + ( ( S x. -u R ) x. ( G .ih F ) ) ) + ( ( R ^ 2 ) x. ( G .ih G ) ) ) |
| 36 | 17 27 | mulcli | |- ( ( * ` S ) x. -u R ) e. CC |
| 37 | 36 18 | mulcli | |- ( ( ( * ` S ) x. -u R ) x. ( F .ih G ) ) e. CC |
| 38 | 1 27 | mulcli | |- ( S x. -u R ) e. CC |
| 39 | 38 20 | mulcli | |- ( ( S x. -u R ) x. ( G .ih F ) ) e. CC |
| 40 | 11 8 | mulcli | |- ( ( R ^ 2 ) x. ( G .ih G ) ) e. CC |
| 41 | 37 39 40 | addassi | |- ( ( ( ( ( * ` S ) x. -u R ) x. ( F .ih G ) ) + ( ( S x. -u R ) x. ( G .ih F ) ) ) + ( ( R ^ 2 ) x. ( G .ih G ) ) ) = ( ( ( ( * ` S ) x. -u R ) x. ( F .ih G ) ) + ( ( ( S x. -u R ) x. ( G .ih F ) ) + ( ( R ^ 2 ) x. ( G .ih G ) ) ) ) |
| 42 | 16 35 41 | 3eqtri | |- ( ( A x. ( R ^ 2 ) ) + ( B x. R ) ) = ( ( ( ( * ` S ) x. -u R ) x. ( F .ih G ) ) + ( ( ( S x. -u R ) x. ( G .ih F ) ) + ( ( R ^ 2 ) x. ( G .ih G ) ) ) ) |
| 43 | 6 42 | oveq12i | |- ( C + ( ( A x. ( R ^ 2 ) ) + ( B x. R ) ) ) = ( ( F .ih F ) + ( ( ( ( * ` S ) x. -u R ) x. ( F .ih G ) ) + ( ( ( S x. -u R ) x. ( G .ih F ) ) + ( ( R ^ 2 ) x. ( G .ih G ) ) ) ) ) |
| 44 | 12 15 | addcli | |- ( ( A x. ( R ^ 2 ) ) + ( B x. R ) ) e. CC |
| 45 | 2 2 | hicli | |- ( F .ih F ) e. CC |
| 46 | 6 45 | eqeltri | |- C e. CC |
| 47 | 44 46 | addcomi | |- ( ( ( A x. ( R ^ 2 ) ) + ( B x. R ) ) + C ) = ( C + ( ( A x. ( R ^ 2 ) ) + ( B x. R ) ) ) |
| 48 | 39 40 | addcli | |- ( ( ( S x. -u R ) x. ( G .ih F ) ) + ( ( R ^ 2 ) x. ( G .ih G ) ) ) e. CC |
| 49 | 45 37 48 | addassi | |- ( ( ( F .ih F ) + ( ( ( * ` S ) x. -u R ) x. ( F .ih G ) ) ) + ( ( ( S x. -u R ) x. ( G .ih F ) ) + ( ( R ^ 2 ) x. ( G .ih G ) ) ) ) = ( ( F .ih F ) + ( ( ( ( * ` S ) x. -u R ) x. ( F .ih G ) ) + ( ( ( S x. -u R ) x. ( G .ih F ) ) + ( ( R ^ 2 ) x. ( G .ih G ) ) ) ) ) |
| 50 | 43 47 49 | 3eqtr4i | |- ( ( ( A x. ( R ^ 2 ) ) + ( B x. R ) ) + C ) = ( ( ( F .ih F ) + ( ( ( * ` S ) x. -u R ) x. ( F .ih G ) ) ) + ( ( ( S x. -u R ) x. ( G .ih F ) ) + ( ( R ^ 2 ) x. ( G .ih G ) ) ) ) |