This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of Beran p. 97. (Contributed by NM, 29-Jul-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | normlem1.1 | ⊢ 𝑆 ∈ ℂ | |
| normlem1.2 | ⊢ 𝐹 ∈ ℋ | ||
| normlem1.3 | ⊢ 𝐺 ∈ ℋ | ||
| normlem2.4 | ⊢ 𝐵 = - ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) | ||
| normlem3.5 | ⊢ 𝐴 = ( 𝐺 ·ih 𝐺 ) | ||
| normlem3.6 | ⊢ 𝐶 = ( 𝐹 ·ih 𝐹 ) | ||
| normlem4.7 | ⊢ 𝑅 ∈ ℝ | ||
| normlem4.8 | ⊢ ( abs ‘ 𝑆 ) = 1 | ||
| Assertion | normlem4 | ⊢ ( ( 𝐹 −ℎ ( ( 𝑆 · 𝑅 ) ·ℎ 𝐺 ) ) ·ih ( 𝐹 −ℎ ( ( 𝑆 · 𝑅 ) ·ℎ 𝐺 ) ) ) = ( ( ( 𝐴 · ( 𝑅 ↑ 2 ) ) + ( 𝐵 · 𝑅 ) ) + 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | normlem1.1 | ⊢ 𝑆 ∈ ℂ | |
| 2 | normlem1.2 | ⊢ 𝐹 ∈ ℋ | |
| 3 | normlem1.3 | ⊢ 𝐺 ∈ ℋ | |
| 4 | normlem2.4 | ⊢ 𝐵 = - ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) | |
| 5 | normlem3.5 | ⊢ 𝐴 = ( 𝐺 ·ih 𝐺 ) | |
| 6 | normlem3.6 | ⊢ 𝐶 = ( 𝐹 ·ih 𝐹 ) | |
| 7 | normlem4.7 | ⊢ 𝑅 ∈ ℝ | |
| 8 | normlem4.8 | ⊢ ( abs ‘ 𝑆 ) = 1 | |
| 9 | 1 2 3 7 8 | normlem1 | ⊢ ( ( 𝐹 −ℎ ( ( 𝑆 · 𝑅 ) ·ℎ 𝐺 ) ) ·ih ( 𝐹 −ℎ ( ( 𝑆 · 𝑅 ) ·ℎ 𝐺 ) ) ) = ( ( ( 𝐹 ·ih 𝐹 ) + ( ( ( ∗ ‘ 𝑆 ) · - 𝑅 ) · ( 𝐹 ·ih 𝐺 ) ) ) + ( ( ( 𝑆 · - 𝑅 ) · ( 𝐺 ·ih 𝐹 ) ) + ( ( 𝑅 ↑ 2 ) · ( 𝐺 ·ih 𝐺 ) ) ) ) |
| 10 | 1 2 3 4 5 6 7 | normlem3 | ⊢ ( ( ( 𝐴 · ( 𝑅 ↑ 2 ) ) + ( 𝐵 · 𝑅 ) ) + 𝐶 ) = ( ( ( 𝐹 ·ih 𝐹 ) + ( ( ( ∗ ‘ 𝑆 ) · - 𝑅 ) · ( 𝐹 ·ih 𝐺 ) ) ) + ( ( ( 𝑆 · - 𝑅 ) · ( 𝐺 ·ih 𝐹 ) ) + ( ( 𝑅 ↑ 2 ) · ( 𝐺 ·ih 𝐺 ) ) ) ) |
| 11 | 9 10 | eqtr4i | ⊢ ( ( 𝐹 −ℎ ( ( 𝑆 · 𝑅 ) ·ℎ 𝐺 ) ) ·ih ( 𝐹 −ℎ ( ( 𝑆 · 𝑅 ) ·ℎ 𝐺 ) ) ) = ( ( ( 𝐴 · ( 𝑅 ↑ 2 ) ) + ( 𝐵 · 𝑅 ) ) + 𝐶 ) |