This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Norm of differences around common element. Part of Lemma 3.6 of Beran p. 101. (Contributed by NM, 16-Aug-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | norm3dif.1 | ⊢ 𝐴 ∈ ℋ | |
| norm3dif.2 | ⊢ 𝐵 ∈ ℋ | ||
| norm3dif.3 | ⊢ 𝐶 ∈ ℋ | ||
| Assertion | norm3difi | ⊢ ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ≤ ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) + ( normℎ ‘ ( 𝐶 −ℎ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | norm3dif.1 | ⊢ 𝐴 ∈ ℋ | |
| 2 | norm3dif.2 | ⊢ 𝐵 ∈ ℋ | |
| 3 | norm3dif.3 | ⊢ 𝐶 ∈ ℋ | |
| 4 | 1 2 | hvsubvali | ⊢ ( 𝐴 −ℎ 𝐵 ) = ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) |
| 5 | 1 3 | hvsubvali | ⊢ ( 𝐴 −ℎ 𝐶 ) = ( 𝐴 +ℎ ( - 1 ·ℎ 𝐶 ) ) |
| 6 | 3 2 | hvsubvali | ⊢ ( 𝐶 −ℎ 𝐵 ) = ( 𝐶 +ℎ ( - 1 ·ℎ 𝐵 ) ) |
| 7 | 5 6 | oveq12i | ⊢ ( ( 𝐴 −ℎ 𝐶 ) +ℎ ( 𝐶 −ℎ 𝐵 ) ) = ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐶 ) ) +ℎ ( 𝐶 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) |
| 8 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 9 | 8 3 | hvmulcli | ⊢ ( - 1 ·ℎ 𝐶 ) ∈ ℋ |
| 10 | 8 2 | hvmulcli | ⊢ ( - 1 ·ℎ 𝐵 ) ∈ ℋ |
| 11 | 3 10 | hvaddcli | ⊢ ( 𝐶 +ℎ ( - 1 ·ℎ 𝐵 ) ) ∈ ℋ |
| 12 | 1 9 11 | hvassi | ⊢ ( ( 𝐴 +ℎ ( - 1 ·ℎ 𝐶 ) ) +ℎ ( 𝐶 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) = ( 𝐴 +ℎ ( ( - 1 ·ℎ 𝐶 ) +ℎ ( 𝐶 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) ) |
| 13 | 9 3 10 | hvassi | ⊢ ( ( ( - 1 ·ℎ 𝐶 ) +ℎ 𝐶 ) +ℎ ( - 1 ·ℎ 𝐵 ) ) = ( ( - 1 ·ℎ 𝐶 ) +ℎ ( 𝐶 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) |
| 14 | 9 3 | hvcomi | ⊢ ( ( - 1 ·ℎ 𝐶 ) +ℎ 𝐶 ) = ( 𝐶 +ℎ ( - 1 ·ℎ 𝐶 ) ) |
| 15 | 3 3 | hvsubvali | ⊢ ( 𝐶 −ℎ 𝐶 ) = ( 𝐶 +ℎ ( - 1 ·ℎ 𝐶 ) ) |
| 16 | hvsubid | ⊢ ( 𝐶 ∈ ℋ → ( 𝐶 −ℎ 𝐶 ) = 0ℎ ) | |
| 17 | 3 16 | ax-mp | ⊢ ( 𝐶 −ℎ 𝐶 ) = 0ℎ |
| 18 | 14 15 17 | 3eqtr2i | ⊢ ( ( - 1 ·ℎ 𝐶 ) +ℎ 𝐶 ) = 0ℎ |
| 19 | 18 | oveq1i | ⊢ ( ( ( - 1 ·ℎ 𝐶 ) +ℎ 𝐶 ) +ℎ ( - 1 ·ℎ 𝐵 ) ) = ( 0ℎ +ℎ ( - 1 ·ℎ 𝐵 ) ) |
| 20 | ax-hv0cl | ⊢ 0ℎ ∈ ℋ | |
| 21 | 20 10 | hvcomi | ⊢ ( 0ℎ +ℎ ( - 1 ·ℎ 𝐵 ) ) = ( ( - 1 ·ℎ 𝐵 ) +ℎ 0ℎ ) |
| 22 | ax-hvaddid | ⊢ ( ( - 1 ·ℎ 𝐵 ) ∈ ℋ → ( ( - 1 ·ℎ 𝐵 ) +ℎ 0ℎ ) = ( - 1 ·ℎ 𝐵 ) ) | |
| 23 | 10 22 | ax-mp | ⊢ ( ( - 1 ·ℎ 𝐵 ) +ℎ 0ℎ ) = ( - 1 ·ℎ 𝐵 ) |
| 24 | 19 21 23 | 3eqtri | ⊢ ( ( ( - 1 ·ℎ 𝐶 ) +ℎ 𝐶 ) +ℎ ( - 1 ·ℎ 𝐵 ) ) = ( - 1 ·ℎ 𝐵 ) |
| 25 | 13 24 | eqtr3i | ⊢ ( ( - 1 ·ℎ 𝐶 ) +ℎ ( 𝐶 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) = ( - 1 ·ℎ 𝐵 ) |
| 26 | 25 | oveq2i | ⊢ ( 𝐴 +ℎ ( ( - 1 ·ℎ 𝐶 ) +ℎ ( 𝐶 +ℎ ( - 1 ·ℎ 𝐵 ) ) ) ) = ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) |
| 27 | 7 12 26 | 3eqtri | ⊢ ( ( 𝐴 −ℎ 𝐶 ) +ℎ ( 𝐶 −ℎ 𝐵 ) ) = ( 𝐴 +ℎ ( - 1 ·ℎ 𝐵 ) ) |
| 28 | 4 27 | eqtr4i | ⊢ ( 𝐴 −ℎ 𝐵 ) = ( ( 𝐴 −ℎ 𝐶 ) +ℎ ( 𝐶 −ℎ 𝐵 ) ) |
| 29 | 28 | fveq2i | ⊢ ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) = ( normℎ ‘ ( ( 𝐴 −ℎ 𝐶 ) +ℎ ( 𝐶 −ℎ 𝐵 ) ) ) |
| 30 | 1 3 | hvsubcli | ⊢ ( 𝐴 −ℎ 𝐶 ) ∈ ℋ |
| 31 | 3 2 | hvsubcli | ⊢ ( 𝐶 −ℎ 𝐵 ) ∈ ℋ |
| 32 | 30 31 | norm-ii-i | ⊢ ( normℎ ‘ ( ( 𝐴 −ℎ 𝐶 ) +ℎ ( 𝐶 −ℎ 𝐵 ) ) ) ≤ ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) + ( normℎ ‘ ( 𝐶 −ℎ 𝐵 ) ) ) |
| 33 | 29 32 | eqbrtri | ⊢ ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ≤ ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) + ( normℎ ‘ ( 𝐶 −ℎ 𝐵 ) ) ) |