This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Norm of differences around common element. Part of Lemma 3.6 of Beran p. 101. (Contributed by NM, 30-Sep-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | norm3dif.1 | ⊢ 𝐴 ∈ ℋ | |
| norm3dif.2 | ⊢ 𝐵 ∈ ℋ | ||
| norm3dif.3 | ⊢ 𝐶 ∈ ℋ | ||
| Assertion | norm3adifii | ⊢ ( abs ‘ ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) − ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ) ) ≤ ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | norm3dif.1 | ⊢ 𝐴 ∈ ℋ | |
| 2 | norm3dif.2 | ⊢ 𝐵 ∈ ℋ | |
| 3 | norm3dif.3 | ⊢ 𝐶 ∈ ℋ | |
| 4 | 1 3 | hvsubcli | ⊢ ( 𝐴 −ℎ 𝐶 ) ∈ ℋ |
| 5 | 4 | normcli | ⊢ ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ∈ ℝ |
| 6 | 5 | recni | ⊢ ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ∈ ℂ |
| 7 | 2 3 | hvsubcli | ⊢ ( 𝐵 −ℎ 𝐶 ) ∈ ℋ |
| 8 | 7 | normcli | ⊢ ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ∈ ℝ |
| 9 | 8 | recni | ⊢ ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ∈ ℂ |
| 10 | 6 9 | negsubdi2i | ⊢ - ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) − ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ) = ( ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) − ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ) |
| 11 | 2 3 1 | norm3difi | ⊢ ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ≤ ( ( normℎ ‘ ( 𝐵 −ℎ 𝐴 ) ) + ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ) |
| 12 | 2 1 | normsubi | ⊢ ( normℎ ‘ ( 𝐵 −ℎ 𝐴 ) ) = ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) |
| 13 | 12 | oveq1i | ⊢ ( ( normℎ ‘ ( 𝐵 −ℎ 𝐴 ) ) + ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ) = ( ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) + ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ) |
| 14 | 11 13 | breqtri | ⊢ ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ≤ ( ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) + ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ) |
| 15 | 1 2 | hvsubcli | ⊢ ( 𝐴 −ℎ 𝐵 ) ∈ ℋ |
| 16 | 15 | normcli | ⊢ ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ∈ ℝ |
| 17 | 8 5 16 | lesubaddi | ⊢ ( ( ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) − ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ) ≤ ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ↔ ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ≤ ( ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) + ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ) ) |
| 18 | 14 17 | mpbir | ⊢ ( ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) − ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ) ≤ ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) |
| 19 | 10 18 | eqbrtri | ⊢ - ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) − ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ) ≤ ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) |
| 20 | 5 8 | resubcli | ⊢ ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) − ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ) ∈ ℝ |
| 21 | 20 16 | lenegcon1i | ⊢ ( - ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) − ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ) ≤ ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ↔ - ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ≤ ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) − ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ) ) |
| 22 | 19 21 | mpbi | ⊢ - ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ≤ ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) − ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ) |
| 23 | 1 3 2 | norm3difi | ⊢ ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ≤ ( ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) + ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ) |
| 24 | 5 8 16 | lesubaddi | ⊢ ( ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) − ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ) ≤ ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ↔ ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) ≤ ( ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) + ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ) ) |
| 25 | 23 24 | mpbir | ⊢ ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) − ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ) ≤ ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) |
| 26 | 20 16 | abslei | ⊢ ( ( abs ‘ ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) − ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ) ) ≤ ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ↔ ( - ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ≤ ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) − ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ) ∧ ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) − ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ) ≤ ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) ) ) |
| 27 | 22 25 26 | mpbir2an | ⊢ ( abs ‘ ( ( normℎ ‘ ( 𝐴 −ℎ 𝐶 ) ) − ( normℎ ‘ ( 𝐵 −ℎ 𝐶 ) ) ) ) ≤ ( normℎ ‘ ( 𝐴 −ℎ 𝐵 ) ) |