This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Norm of differences around common element. Part of Lemma 3.6 of Beran p. 101. (Contributed by NM, 16-Aug-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | norm3dif.1 | |- A e. ~H |
|
| norm3dif.2 | |- B e. ~H |
||
| norm3dif.3 | |- C e. ~H |
||
| Assertion | norm3difi | |- ( normh ` ( A -h B ) ) <_ ( ( normh ` ( A -h C ) ) + ( normh ` ( C -h B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | norm3dif.1 | |- A e. ~H |
|
| 2 | norm3dif.2 | |- B e. ~H |
|
| 3 | norm3dif.3 | |- C e. ~H |
|
| 4 | 1 2 | hvsubvali | |- ( A -h B ) = ( A +h ( -u 1 .h B ) ) |
| 5 | 1 3 | hvsubvali | |- ( A -h C ) = ( A +h ( -u 1 .h C ) ) |
| 6 | 3 2 | hvsubvali | |- ( C -h B ) = ( C +h ( -u 1 .h B ) ) |
| 7 | 5 6 | oveq12i | |- ( ( A -h C ) +h ( C -h B ) ) = ( ( A +h ( -u 1 .h C ) ) +h ( C +h ( -u 1 .h B ) ) ) |
| 8 | neg1cn | |- -u 1 e. CC |
|
| 9 | 8 3 | hvmulcli | |- ( -u 1 .h C ) e. ~H |
| 10 | 8 2 | hvmulcli | |- ( -u 1 .h B ) e. ~H |
| 11 | 3 10 | hvaddcli | |- ( C +h ( -u 1 .h B ) ) e. ~H |
| 12 | 1 9 11 | hvassi | |- ( ( A +h ( -u 1 .h C ) ) +h ( C +h ( -u 1 .h B ) ) ) = ( A +h ( ( -u 1 .h C ) +h ( C +h ( -u 1 .h B ) ) ) ) |
| 13 | 9 3 10 | hvassi | |- ( ( ( -u 1 .h C ) +h C ) +h ( -u 1 .h B ) ) = ( ( -u 1 .h C ) +h ( C +h ( -u 1 .h B ) ) ) |
| 14 | 9 3 | hvcomi | |- ( ( -u 1 .h C ) +h C ) = ( C +h ( -u 1 .h C ) ) |
| 15 | 3 3 | hvsubvali | |- ( C -h C ) = ( C +h ( -u 1 .h C ) ) |
| 16 | hvsubid | |- ( C e. ~H -> ( C -h C ) = 0h ) |
|
| 17 | 3 16 | ax-mp | |- ( C -h C ) = 0h |
| 18 | 14 15 17 | 3eqtr2i | |- ( ( -u 1 .h C ) +h C ) = 0h |
| 19 | 18 | oveq1i | |- ( ( ( -u 1 .h C ) +h C ) +h ( -u 1 .h B ) ) = ( 0h +h ( -u 1 .h B ) ) |
| 20 | ax-hv0cl | |- 0h e. ~H |
|
| 21 | 20 10 | hvcomi | |- ( 0h +h ( -u 1 .h B ) ) = ( ( -u 1 .h B ) +h 0h ) |
| 22 | ax-hvaddid | |- ( ( -u 1 .h B ) e. ~H -> ( ( -u 1 .h B ) +h 0h ) = ( -u 1 .h B ) ) |
|
| 23 | 10 22 | ax-mp | |- ( ( -u 1 .h B ) +h 0h ) = ( -u 1 .h B ) |
| 24 | 19 21 23 | 3eqtri | |- ( ( ( -u 1 .h C ) +h C ) +h ( -u 1 .h B ) ) = ( -u 1 .h B ) |
| 25 | 13 24 | eqtr3i | |- ( ( -u 1 .h C ) +h ( C +h ( -u 1 .h B ) ) ) = ( -u 1 .h B ) |
| 26 | 25 | oveq2i | |- ( A +h ( ( -u 1 .h C ) +h ( C +h ( -u 1 .h B ) ) ) ) = ( A +h ( -u 1 .h B ) ) |
| 27 | 7 12 26 | 3eqtri | |- ( ( A -h C ) +h ( C -h B ) ) = ( A +h ( -u 1 .h B ) ) |
| 28 | 4 27 | eqtr4i | |- ( A -h B ) = ( ( A -h C ) +h ( C -h B ) ) |
| 29 | 28 | fveq2i | |- ( normh ` ( A -h B ) ) = ( normh ` ( ( A -h C ) +h ( C -h B ) ) ) |
| 30 | 1 3 | hvsubcli | |- ( A -h C ) e. ~H |
| 31 | 3 2 | hvsubcli | |- ( C -h B ) e. ~H |
| 32 | 30 31 | norm-ii-i | |- ( normh ` ( ( A -h C ) +h ( C -h B ) ) ) <_ ( ( normh ` ( A -h C ) ) + ( normh ` ( C -h B ) ) ) |
| 33 | 29 32 | eqbrtri | |- ( normh ` ( A -h B ) ) <_ ( ( normh ` ( A -h C ) ) + ( normh ` ( C -h B ) ) ) |