This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Norm of differences around common element. Part of Lemma 3.6 of Beran p. 101. (Contributed by NM, 30-Sep-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | norm3dif.1 | |- A e. ~H |
|
| norm3dif.2 | |- B e. ~H |
||
| norm3dif.3 | |- C e. ~H |
||
| Assertion | norm3adifii | |- ( abs ` ( ( normh ` ( A -h C ) ) - ( normh ` ( B -h C ) ) ) ) <_ ( normh ` ( A -h B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | norm3dif.1 | |- A e. ~H |
|
| 2 | norm3dif.2 | |- B e. ~H |
|
| 3 | norm3dif.3 | |- C e. ~H |
|
| 4 | 1 3 | hvsubcli | |- ( A -h C ) e. ~H |
| 5 | 4 | normcli | |- ( normh ` ( A -h C ) ) e. RR |
| 6 | 5 | recni | |- ( normh ` ( A -h C ) ) e. CC |
| 7 | 2 3 | hvsubcli | |- ( B -h C ) e. ~H |
| 8 | 7 | normcli | |- ( normh ` ( B -h C ) ) e. RR |
| 9 | 8 | recni | |- ( normh ` ( B -h C ) ) e. CC |
| 10 | 6 9 | negsubdi2i | |- -u ( ( normh ` ( A -h C ) ) - ( normh ` ( B -h C ) ) ) = ( ( normh ` ( B -h C ) ) - ( normh ` ( A -h C ) ) ) |
| 11 | 2 3 1 | norm3difi | |- ( normh ` ( B -h C ) ) <_ ( ( normh ` ( B -h A ) ) + ( normh ` ( A -h C ) ) ) |
| 12 | 2 1 | normsubi | |- ( normh ` ( B -h A ) ) = ( normh ` ( A -h B ) ) |
| 13 | 12 | oveq1i | |- ( ( normh ` ( B -h A ) ) + ( normh ` ( A -h C ) ) ) = ( ( normh ` ( A -h B ) ) + ( normh ` ( A -h C ) ) ) |
| 14 | 11 13 | breqtri | |- ( normh ` ( B -h C ) ) <_ ( ( normh ` ( A -h B ) ) + ( normh ` ( A -h C ) ) ) |
| 15 | 1 2 | hvsubcli | |- ( A -h B ) e. ~H |
| 16 | 15 | normcli | |- ( normh ` ( A -h B ) ) e. RR |
| 17 | 8 5 16 | lesubaddi | |- ( ( ( normh ` ( B -h C ) ) - ( normh ` ( A -h C ) ) ) <_ ( normh ` ( A -h B ) ) <-> ( normh ` ( B -h C ) ) <_ ( ( normh ` ( A -h B ) ) + ( normh ` ( A -h C ) ) ) ) |
| 18 | 14 17 | mpbir | |- ( ( normh ` ( B -h C ) ) - ( normh ` ( A -h C ) ) ) <_ ( normh ` ( A -h B ) ) |
| 19 | 10 18 | eqbrtri | |- -u ( ( normh ` ( A -h C ) ) - ( normh ` ( B -h C ) ) ) <_ ( normh ` ( A -h B ) ) |
| 20 | 5 8 | resubcli | |- ( ( normh ` ( A -h C ) ) - ( normh ` ( B -h C ) ) ) e. RR |
| 21 | 20 16 | lenegcon1i | |- ( -u ( ( normh ` ( A -h C ) ) - ( normh ` ( B -h C ) ) ) <_ ( normh ` ( A -h B ) ) <-> -u ( normh ` ( A -h B ) ) <_ ( ( normh ` ( A -h C ) ) - ( normh ` ( B -h C ) ) ) ) |
| 22 | 19 21 | mpbi | |- -u ( normh ` ( A -h B ) ) <_ ( ( normh ` ( A -h C ) ) - ( normh ` ( B -h C ) ) ) |
| 23 | 1 3 2 | norm3difi | |- ( normh ` ( A -h C ) ) <_ ( ( normh ` ( A -h B ) ) + ( normh ` ( B -h C ) ) ) |
| 24 | 5 8 16 | lesubaddi | |- ( ( ( normh ` ( A -h C ) ) - ( normh ` ( B -h C ) ) ) <_ ( normh ` ( A -h B ) ) <-> ( normh ` ( A -h C ) ) <_ ( ( normh ` ( A -h B ) ) + ( normh ` ( B -h C ) ) ) ) |
| 25 | 23 24 | mpbir | |- ( ( normh ` ( A -h C ) ) - ( normh ` ( B -h C ) ) ) <_ ( normh ` ( A -h B ) ) |
| 26 | 20 16 | abslei | |- ( ( abs ` ( ( normh ` ( A -h C ) ) - ( normh ` ( B -h C ) ) ) ) <_ ( normh ` ( A -h B ) ) <-> ( -u ( normh ` ( A -h B ) ) <_ ( ( normh ` ( A -h C ) ) - ( normh ` ( B -h C ) ) ) /\ ( ( normh ` ( A -h C ) ) - ( normh ` ( B -h C ) ) ) <_ ( normh ` ( A -h B ) ) ) ) |
| 27 | 22 25 26 | mpbir2an | |- ( abs ` ( ( normh ` ( A -h C ) ) - ( normh ` ( B -h C ) ) ) ) <_ ( normh ` ( A -h B ) ) |