This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is no smallest positive real number. (Contributed by NM, 28-Oct-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nominpos | ⊢ ¬ ∃ 𝑥 ∈ ℝ ( 0 < 𝑥 ∧ ¬ ∃ 𝑦 ∈ ℝ ( 0 < 𝑦 ∧ 𝑦 < 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rehalfcl | ⊢ ( 𝑥 ∈ ℝ → ( 𝑥 / 2 ) ∈ ℝ ) | |
| 2 | 2re | ⊢ 2 ∈ ℝ | |
| 3 | 2pos | ⊢ 0 < 2 | |
| 4 | divgt0 | ⊢ ( ( ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → 0 < ( 𝑥 / 2 ) ) | |
| 5 | 2 3 4 | mpanr12 | ⊢ ( ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) → 0 < ( 𝑥 / 2 ) ) |
| 6 | 5 | ex | ⊢ ( 𝑥 ∈ ℝ → ( 0 < 𝑥 → 0 < ( 𝑥 / 2 ) ) ) |
| 7 | halfpos | ⊢ ( 𝑥 ∈ ℝ → ( 0 < 𝑥 ↔ ( 𝑥 / 2 ) < 𝑥 ) ) | |
| 8 | 7 | biimpd | ⊢ ( 𝑥 ∈ ℝ → ( 0 < 𝑥 → ( 𝑥 / 2 ) < 𝑥 ) ) |
| 9 | 6 8 | jcad | ⊢ ( 𝑥 ∈ ℝ → ( 0 < 𝑥 → ( 0 < ( 𝑥 / 2 ) ∧ ( 𝑥 / 2 ) < 𝑥 ) ) ) |
| 10 | breq2 | ⊢ ( 𝑦 = ( 𝑥 / 2 ) → ( 0 < 𝑦 ↔ 0 < ( 𝑥 / 2 ) ) ) | |
| 11 | breq1 | ⊢ ( 𝑦 = ( 𝑥 / 2 ) → ( 𝑦 < 𝑥 ↔ ( 𝑥 / 2 ) < 𝑥 ) ) | |
| 12 | 10 11 | anbi12d | ⊢ ( 𝑦 = ( 𝑥 / 2 ) → ( ( 0 < 𝑦 ∧ 𝑦 < 𝑥 ) ↔ ( 0 < ( 𝑥 / 2 ) ∧ ( 𝑥 / 2 ) < 𝑥 ) ) ) |
| 13 | 12 | rspcev | ⊢ ( ( ( 𝑥 / 2 ) ∈ ℝ ∧ ( 0 < ( 𝑥 / 2 ) ∧ ( 𝑥 / 2 ) < 𝑥 ) ) → ∃ 𝑦 ∈ ℝ ( 0 < 𝑦 ∧ 𝑦 < 𝑥 ) ) |
| 14 | 1 9 13 | syl6an | ⊢ ( 𝑥 ∈ ℝ → ( 0 < 𝑥 → ∃ 𝑦 ∈ ℝ ( 0 < 𝑦 ∧ 𝑦 < 𝑥 ) ) ) |
| 15 | iman | ⊢ ( ( 0 < 𝑥 → ∃ 𝑦 ∈ ℝ ( 0 < 𝑦 ∧ 𝑦 < 𝑥 ) ) ↔ ¬ ( 0 < 𝑥 ∧ ¬ ∃ 𝑦 ∈ ℝ ( 0 < 𝑦 ∧ 𝑦 < 𝑥 ) ) ) | |
| 16 | 14 15 | sylib | ⊢ ( 𝑥 ∈ ℝ → ¬ ( 0 < 𝑥 ∧ ¬ ∃ 𝑦 ∈ ℝ ( 0 < 𝑦 ∧ 𝑦 < 𝑥 ) ) ) |
| 17 | 16 | nrex | ⊢ ¬ ∃ 𝑥 ∈ ℝ ( 0 < 𝑥 ∧ ¬ ∃ 𝑦 ∈ ℝ ( 0 < 𝑦 ∧ 𝑦 < 𝑥 ) ) |