This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An integer is odd iff its predecessor divided by 2 is an integer. This is another representation of odd numbers without using the divides relation. (Contributed by AV, 18-Jun-2021) (Proof shortened by AV, 22-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oddm1d2 | ⊢ ( 𝑁 ∈ ℤ → ( ¬ 2 ∥ 𝑁 ↔ ( ( 𝑁 − 1 ) / 2 ) ∈ ℤ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oddp1d2 | ⊢ ( 𝑁 ∈ ℤ → ( ¬ 2 ∥ 𝑁 ↔ ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ) ) | |
| 2 | zob | ⊢ ( 𝑁 ∈ ℤ → ( ( ( 𝑁 + 1 ) / 2 ) ∈ ℤ ↔ ( ( 𝑁 − 1 ) / 2 ) ∈ ℤ ) ) | |
| 3 | 1 2 | bitrd | ⊢ ( 𝑁 ∈ ℤ → ( ¬ 2 ∥ 𝑁 ↔ ( ( 𝑁 − 1 ) / 2 ) ∈ ℤ ) ) |