This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A positive integer is odd iff its successor divided by 2 is a positive integer. (Contributed by AV, 28-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnoddm1d2 | |- ( N e. NN -> ( -. 2 || N <-> ( ( N + 1 ) / 2 ) e. NN ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnz | |- ( N e. NN -> N e. ZZ ) |
|
| 2 | oddp1d2 | |- ( N e. ZZ -> ( -. 2 || N <-> ( ( N + 1 ) / 2 ) e. ZZ ) ) |
|
| 3 | 1 2 | syl | |- ( N e. NN -> ( -. 2 || N <-> ( ( N + 1 ) / 2 ) e. ZZ ) ) |
| 4 | peano2nn | |- ( N e. NN -> ( N + 1 ) e. NN ) |
|
| 5 | 4 | nnred | |- ( N e. NN -> ( N + 1 ) e. RR ) |
| 6 | 2re | |- 2 e. RR |
|
| 7 | 6 | a1i | |- ( N e. NN -> 2 e. RR ) |
| 8 | nnre | |- ( N e. NN -> N e. RR ) |
|
| 9 | 1red | |- ( N e. NN -> 1 e. RR ) |
|
| 10 | nngt0 | |- ( N e. NN -> 0 < N ) |
|
| 11 | 0lt1 | |- 0 < 1 |
|
| 12 | 11 | a1i | |- ( N e. NN -> 0 < 1 ) |
| 13 | 8 9 10 12 | addgt0d | |- ( N e. NN -> 0 < ( N + 1 ) ) |
| 14 | 2pos | |- 0 < 2 |
|
| 15 | 14 | a1i | |- ( N e. NN -> 0 < 2 ) |
| 16 | 5 7 13 15 | divgt0d | |- ( N e. NN -> 0 < ( ( N + 1 ) / 2 ) ) |
| 17 | 16 | anim1ci | |- ( ( N e. NN /\ ( ( N + 1 ) / 2 ) e. ZZ ) -> ( ( ( N + 1 ) / 2 ) e. ZZ /\ 0 < ( ( N + 1 ) / 2 ) ) ) |
| 18 | elnnz | |- ( ( ( N + 1 ) / 2 ) e. NN <-> ( ( ( N + 1 ) / 2 ) e. ZZ /\ 0 < ( ( N + 1 ) / 2 ) ) ) |
|
| 19 | 17 18 | sylibr | |- ( ( N e. NN /\ ( ( N + 1 ) / 2 ) e. ZZ ) -> ( ( N + 1 ) / 2 ) e. NN ) |
| 20 | 19 | ex | |- ( N e. NN -> ( ( ( N + 1 ) / 2 ) e. ZZ -> ( ( N + 1 ) / 2 ) e. NN ) ) |
| 21 | nnz | |- ( ( ( N + 1 ) / 2 ) e. NN -> ( ( N + 1 ) / 2 ) e. ZZ ) |
|
| 22 | 20 21 | impbid1 | |- ( N e. NN -> ( ( ( N + 1 ) / 2 ) e. ZZ <-> ( ( N + 1 ) / 2 ) e. NN ) ) |
| 23 | 3 22 | bitrd | |- ( N e. NN -> ( -. 2 || N <-> ( ( N + 1 ) / 2 ) e. NN ) ) |