This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cancellation law for multiplication of natural numbers. (Contributed by NM, 26-Oct-1995) (Revised by Mario Carneiro, 15-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnmcan | |- ( ( ( A e. _om /\ B e. _om /\ C e. _om ) /\ (/) e. A ) -> ( ( A .o B ) = ( A .o C ) <-> B = C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anrot | |- ( ( A e. _om /\ B e. _om /\ C e. _om ) <-> ( B e. _om /\ C e. _om /\ A e. _om ) ) |
|
| 2 | nnmword | |- ( ( ( B e. _om /\ C e. _om /\ A e. _om ) /\ (/) e. A ) -> ( B C_ C <-> ( A .o B ) C_ ( A .o C ) ) ) |
|
| 3 | 1 2 | sylanb | |- ( ( ( A e. _om /\ B e. _om /\ C e. _om ) /\ (/) e. A ) -> ( B C_ C <-> ( A .o B ) C_ ( A .o C ) ) ) |
| 4 | 3anrev | |- ( ( A e. _om /\ B e. _om /\ C e. _om ) <-> ( C e. _om /\ B e. _om /\ A e. _om ) ) |
|
| 5 | nnmword | |- ( ( ( C e. _om /\ B e. _om /\ A e. _om ) /\ (/) e. A ) -> ( C C_ B <-> ( A .o C ) C_ ( A .o B ) ) ) |
|
| 6 | 4 5 | sylanb | |- ( ( ( A e. _om /\ B e. _om /\ C e. _om ) /\ (/) e. A ) -> ( C C_ B <-> ( A .o C ) C_ ( A .o B ) ) ) |
| 7 | 3 6 | anbi12d | |- ( ( ( A e. _om /\ B e. _om /\ C e. _om ) /\ (/) e. A ) -> ( ( B C_ C /\ C C_ B ) <-> ( ( A .o B ) C_ ( A .o C ) /\ ( A .o C ) C_ ( A .o B ) ) ) ) |
| 8 | 7 | bicomd | |- ( ( ( A e. _om /\ B e. _om /\ C e. _om ) /\ (/) e. A ) -> ( ( ( A .o B ) C_ ( A .o C ) /\ ( A .o C ) C_ ( A .o B ) ) <-> ( B C_ C /\ C C_ B ) ) ) |
| 9 | eqss | |- ( ( A .o B ) = ( A .o C ) <-> ( ( A .o B ) C_ ( A .o C ) /\ ( A .o C ) C_ ( A .o B ) ) ) |
|
| 10 | eqss | |- ( B = C <-> ( B C_ C /\ C C_ B ) ) |
|
| 11 | 8 9 10 | 3bitr4g | |- ( ( ( A e. _om /\ B e. _om /\ C e. _om ) /\ (/) e. A ) -> ( ( A .o B ) = ( A .o C ) <-> B = C ) ) |