This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence for ordering. (Contributed by Scott Fenton, 18-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nnaordex2 | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ∈ 𝐵 ↔ ∃ 𝑥 ∈ ω ( 𝐴 +o suc 𝑥 ) = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnaordex | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ∈ 𝐵 ↔ ∃ 𝑦 ∈ ω ( ∅ ∈ 𝑦 ∧ ( 𝐴 +o 𝑦 ) = 𝐵 ) ) ) | |
| 2 | nn0suc | ⊢ ( 𝑦 ∈ ω → ( 𝑦 = ∅ ∨ ∃ 𝑥 ∈ ω 𝑦 = suc 𝑥 ) ) | |
| 3 | 2 | ad2antrl | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ ( 𝑦 ∈ ω ∧ ( ∅ ∈ 𝑦 ∧ ( 𝐴 +o 𝑦 ) = 𝐵 ) ) ) → ( 𝑦 = ∅ ∨ ∃ 𝑥 ∈ ω 𝑦 = suc 𝑥 ) ) |
| 4 | simprrl | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ ( 𝑦 ∈ ω ∧ ( ∅ ∈ 𝑦 ∧ ( 𝐴 +o 𝑦 ) = 𝐵 ) ) ) → ∅ ∈ 𝑦 ) | |
| 5 | n0i | ⊢ ( ∅ ∈ 𝑦 → ¬ 𝑦 = ∅ ) | |
| 6 | 4 5 | syl | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ ( 𝑦 ∈ ω ∧ ( ∅ ∈ 𝑦 ∧ ( 𝐴 +o 𝑦 ) = 𝐵 ) ) ) → ¬ 𝑦 = ∅ ) |
| 7 | 3 6 | orcnd | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ ( 𝑦 ∈ ω ∧ ( ∅ ∈ 𝑦 ∧ ( 𝐴 +o 𝑦 ) = 𝐵 ) ) ) → ∃ 𝑥 ∈ ω 𝑦 = suc 𝑥 ) |
| 8 | simprrr | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ ( 𝑦 ∈ ω ∧ ( ∅ ∈ 𝑦 ∧ ( 𝐴 +o 𝑦 ) = 𝐵 ) ) ) → ( 𝐴 +o 𝑦 ) = 𝐵 ) | |
| 9 | oveq2 | ⊢ ( 𝑦 = suc 𝑥 → ( 𝐴 +o 𝑦 ) = ( 𝐴 +o suc 𝑥 ) ) | |
| 10 | 9 | eqeq1d | ⊢ ( 𝑦 = suc 𝑥 → ( ( 𝐴 +o 𝑦 ) = 𝐵 ↔ ( 𝐴 +o suc 𝑥 ) = 𝐵 ) ) |
| 11 | 8 10 | syl5ibcom | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ ( 𝑦 ∈ ω ∧ ( ∅ ∈ 𝑦 ∧ ( 𝐴 +o 𝑦 ) = 𝐵 ) ) ) → ( 𝑦 = suc 𝑥 → ( 𝐴 +o suc 𝑥 ) = 𝐵 ) ) |
| 12 | 11 | reximdv | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ ( 𝑦 ∈ ω ∧ ( ∅ ∈ 𝑦 ∧ ( 𝐴 +o 𝑦 ) = 𝐵 ) ) ) → ( ∃ 𝑥 ∈ ω 𝑦 = suc 𝑥 → ∃ 𝑥 ∈ ω ( 𝐴 +o suc 𝑥 ) = 𝐵 ) ) |
| 13 | 7 12 | mpd | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ ( 𝑦 ∈ ω ∧ ( ∅ ∈ 𝑦 ∧ ( 𝐴 +o 𝑦 ) = 𝐵 ) ) ) → ∃ 𝑥 ∈ ω ( 𝐴 +o suc 𝑥 ) = 𝐵 ) |
| 14 | 13 | rexlimdvaa | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ∃ 𝑦 ∈ ω ( ∅ ∈ 𝑦 ∧ ( 𝐴 +o 𝑦 ) = 𝐵 ) → ∃ 𝑥 ∈ ω ( 𝐴 +o suc 𝑥 ) = 𝐵 ) ) |
| 15 | peano2 | ⊢ ( 𝑥 ∈ ω → suc 𝑥 ∈ ω ) | |
| 16 | 15 | ad2antrl | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ ( 𝑥 ∈ ω ∧ ( 𝐴 +o suc 𝑥 ) = 𝐵 ) ) → suc 𝑥 ∈ ω ) |
| 17 | nnord | ⊢ ( 𝑥 ∈ ω → Ord 𝑥 ) | |
| 18 | 17 | ad2antrl | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ ( 𝑥 ∈ ω ∧ ( 𝐴 +o suc 𝑥 ) = 𝐵 ) ) → Ord 𝑥 ) |
| 19 | 0elsuc | ⊢ ( Ord 𝑥 → ∅ ∈ suc 𝑥 ) | |
| 20 | 18 19 | syl | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ ( 𝑥 ∈ ω ∧ ( 𝐴 +o suc 𝑥 ) = 𝐵 ) ) → ∅ ∈ suc 𝑥 ) |
| 21 | simprr | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ ( 𝑥 ∈ ω ∧ ( 𝐴 +o suc 𝑥 ) = 𝐵 ) ) → ( 𝐴 +o suc 𝑥 ) = 𝐵 ) | |
| 22 | eleq2 | ⊢ ( 𝑦 = suc 𝑥 → ( ∅ ∈ 𝑦 ↔ ∅ ∈ suc 𝑥 ) ) | |
| 23 | 22 10 | anbi12d | ⊢ ( 𝑦 = suc 𝑥 → ( ( ∅ ∈ 𝑦 ∧ ( 𝐴 +o 𝑦 ) = 𝐵 ) ↔ ( ∅ ∈ suc 𝑥 ∧ ( 𝐴 +o suc 𝑥 ) = 𝐵 ) ) ) |
| 24 | 23 | rspcev | ⊢ ( ( suc 𝑥 ∈ ω ∧ ( ∅ ∈ suc 𝑥 ∧ ( 𝐴 +o suc 𝑥 ) = 𝐵 ) ) → ∃ 𝑦 ∈ ω ( ∅ ∈ 𝑦 ∧ ( 𝐴 +o 𝑦 ) = 𝐵 ) ) |
| 25 | 16 20 21 24 | syl12anc | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ ( 𝑥 ∈ ω ∧ ( 𝐴 +o suc 𝑥 ) = 𝐵 ) ) → ∃ 𝑦 ∈ ω ( ∅ ∈ 𝑦 ∧ ( 𝐴 +o 𝑦 ) = 𝐵 ) ) |
| 26 | 25 | rexlimdvaa | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ∃ 𝑥 ∈ ω ( 𝐴 +o suc 𝑥 ) = 𝐵 → ∃ 𝑦 ∈ ω ( ∅ ∈ 𝑦 ∧ ( 𝐴 +o 𝑦 ) = 𝐵 ) ) ) |
| 27 | 14 26 | impbid | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( ∃ 𝑦 ∈ ω ( ∅ ∈ 𝑦 ∧ ( 𝐴 +o 𝑦 ) = 𝐵 ) ↔ ∃ 𝑥 ∈ ω ( 𝐴 +o suc 𝑥 ) = 𝐵 ) ) |
| 28 | 1 27 | bitrd | ⊢ ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) → ( 𝐴 ∈ 𝐵 ↔ ∃ 𝑥 ∈ ω ( 𝐴 +o suc 𝑥 ) = 𝐵 ) ) |