This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Three halves is not an integer. (Contributed by AV, 2-Jun-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 3halfnz | ⊢ ¬ ( 3 / 2 ) ∈ ℤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1z | ⊢ 1 ∈ ℤ | |
| 2 | 2cn | ⊢ 2 ∈ ℂ | |
| 3 | 2 | mullidi | ⊢ ( 1 · 2 ) = 2 |
| 4 | 2lt3 | ⊢ 2 < 3 | |
| 5 | 3 4 | eqbrtri | ⊢ ( 1 · 2 ) < 3 |
| 6 | 1re | ⊢ 1 ∈ ℝ | |
| 7 | 3re | ⊢ 3 ∈ ℝ | |
| 8 | 2re | ⊢ 2 ∈ ℝ | |
| 9 | 2pos | ⊢ 0 < 2 | |
| 10 | 8 9 | pm3.2i | ⊢ ( 2 ∈ ℝ ∧ 0 < 2 ) |
| 11 | ltmuldiv | ⊢ ( ( 1 ∈ ℝ ∧ 3 ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( 1 · 2 ) < 3 ↔ 1 < ( 3 / 2 ) ) ) | |
| 12 | 6 7 10 11 | mp3an | ⊢ ( ( 1 · 2 ) < 3 ↔ 1 < ( 3 / 2 ) ) |
| 13 | 5 12 | mpbi | ⊢ 1 < ( 3 / 2 ) |
| 14 | 3lt4 | ⊢ 3 < 4 | |
| 15 | 2t2e4 | ⊢ ( 2 · 2 ) = 4 | |
| 16 | 15 | breq2i | ⊢ ( 3 < ( 2 · 2 ) ↔ 3 < 4 ) |
| 17 | 14 16 | mpbir | ⊢ 3 < ( 2 · 2 ) |
| 18 | 1p1e2 | ⊢ ( 1 + 1 ) = 2 | |
| 19 | 18 | breq2i | ⊢ ( ( 3 / 2 ) < ( 1 + 1 ) ↔ ( 3 / 2 ) < 2 ) |
| 20 | ltdivmul | ⊢ ( ( 3 ∈ ℝ ∧ 2 ∈ ℝ ∧ ( 2 ∈ ℝ ∧ 0 < 2 ) ) → ( ( 3 / 2 ) < 2 ↔ 3 < ( 2 · 2 ) ) ) | |
| 21 | 7 8 10 20 | mp3an | ⊢ ( ( 3 / 2 ) < 2 ↔ 3 < ( 2 · 2 ) ) |
| 22 | 19 21 | bitri | ⊢ ( ( 3 / 2 ) < ( 1 + 1 ) ↔ 3 < ( 2 · 2 ) ) |
| 23 | 17 22 | mpbir | ⊢ ( 3 / 2 ) < ( 1 + 1 ) |
| 24 | btwnnz | ⊢ ( ( 1 ∈ ℤ ∧ 1 < ( 3 / 2 ) ∧ ( 3 / 2 ) < ( 1 + 1 ) ) → ¬ ( 3 / 2 ) ∈ ℤ ) | |
| 25 | 1 13 23 24 | mp3an | ⊢ ¬ ( 3 / 2 ) ∈ ℤ |