This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonnegative integer is neither 0 nor 1 if and only if it is greater than or equal to 2. (Contributed by Alexander van der Vekens, 17-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nn0n0n1ge2b | ⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 ≠ 0 ∧ 𝑁 ≠ 1 ) ↔ 2 ≤ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0n0n1ge2 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ∧ 𝑁 ≠ 1 ) → 2 ≤ 𝑁 ) | |
| 2 | 1 | 3expib | ⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 ≠ 0 ∧ 𝑁 ≠ 1 ) → 2 ≤ 𝑁 ) ) |
| 3 | ianor | ⊢ ( ¬ ( 𝑁 ≠ 0 ∧ 𝑁 ≠ 1 ) ↔ ( ¬ 𝑁 ≠ 0 ∨ ¬ 𝑁 ≠ 1 ) ) | |
| 4 | nne | ⊢ ( ¬ 𝑁 ≠ 0 ↔ 𝑁 = 0 ) | |
| 5 | nne | ⊢ ( ¬ 𝑁 ≠ 1 ↔ 𝑁 = 1 ) | |
| 6 | 4 5 | orbi12i | ⊢ ( ( ¬ 𝑁 ≠ 0 ∨ ¬ 𝑁 ≠ 1 ) ↔ ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) |
| 7 | 3 6 | bitri | ⊢ ( ¬ ( 𝑁 ≠ 0 ∧ 𝑁 ≠ 1 ) ↔ ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) |
| 8 | 2pos | ⊢ 0 < 2 | |
| 9 | breq1 | ⊢ ( 𝑁 = 0 → ( 𝑁 < 2 ↔ 0 < 2 ) ) | |
| 10 | 8 9 | mpbiri | ⊢ ( 𝑁 = 0 → 𝑁 < 2 ) |
| 11 | 10 | a1d | ⊢ ( 𝑁 = 0 → ( 𝑁 ∈ ℕ0 → 𝑁 < 2 ) ) |
| 12 | 1lt2 | ⊢ 1 < 2 | |
| 13 | breq1 | ⊢ ( 𝑁 = 1 → ( 𝑁 < 2 ↔ 1 < 2 ) ) | |
| 14 | 12 13 | mpbiri | ⊢ ( 𝑁 = 1 → 𝑁 < 2 ) |
| 15 | 14 | a1d | ⊢ ( 𝑁 = 1 → ( 𝑁 ∈ ℕ0 → 𝑁 < 2 ) ) |
| 16 | 11 15 | jaoi | ⊢ ( ( 𝑁 = 0 ∨ 𝑁 = 1 ) → ( 𝑁 ∈ ℕ0 → 𝑁 < 2 ) ) |
| 17 | 16 | impcom | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) → 𝑁 < 2 ) |
| 18 | nn0re | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) | |
| 19 | 2re | ⊢ 2 ∈ ℝ | |
| 20 | 18 19 | jctir | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 ∈ ℝ ∧ 2 ∈ ℝ ) ) |
| 21 | 20 | adantr | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) → ( 𝑁 ∈ ℝ ∧ 2 ∈ ℝ ) ) |
| 22 | ltnle | ⊢ ( ( 𝑁 ∈ ℝ ∧ 2 ∈ ℝ ) → ( 𝑁 < 2 ↔ ¬ 2 ≤ 𝑁 ) ) | |
| 23 | 21 22 | syl | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) → ( 𝑁 < 2 ↔ ¬ 2 ≤ 𝑁 ) ) |
| 24 | 17 23 | mpbid | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑁 = 0 ∨ 𝑁 = 1 ) ) → ¬ 2 ≤ 𝑁 ) |
| 25 | 24 | ex | ⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 = 0 ∨ 𝑁 = 1 ) → ¬ 2 ≤ 𝑁 ) ) |
| 26 | 7 25 | biimtrid | ⊢ ( 𝑁 ∈ ℕ0 → ( ¬ ( 𝑁 ≠ 0 ∧ 𝑁 ≠ 1 ) → ¬ 2 ≤ 𝑁 ) ) |
| 27 | 2 26 | impcon4bid | ⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 ≠ 0 ∧ 𝑁 ≠ 1 ) ↔ 2 ≤ 𝑁 ) ) |