This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonnegative integer is neither 0 nor 1 if and only if it is greater than or equal to 2. (Contributed by Alexander van der Vekens, 17-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nn0n0n1ge2b | |- ( N e. NN0 -> ( ( N =/= 0 /\ N =/= 1 ) <-> 2 <_ N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0n0n1ge2 | |- ( ( N e. NN0 /\ N =/= 0 /\ N =/= 1 ) -> 2 <_ N ) |
|
| 2 | 1 | 3expib | |- ( N e. NN0 -> ( ( N =/= 0 /\ N =/= 1 ) -> 2 <_ N ) ) |
| 3 | ianor | |- ( -. ( N =/= 0 /\ N =/= 1 ) <-> ( -. N =/= 0 \/ -. N =/= 1 ) ) |
|
| 4 | nne | |- ( -. N =/= 0 <-> N = 0 ) |
|
| 5 | nne | |- ( -. N =/= 1 <-> N = 1 ) |
|
| 6 | 4 5 | orbi12i | |- ( ( -. N =/= 0 \/ -. N =/= 1 ) <-> ( N = 0 \/ N = 1 ) ) |
| 7 | 3 6 | bitri | |- ( -. ( N =/= 0 /\ N =/= 1 ) <-> ( N = 0 \/ N = 1 ) ) |
| 8 | 2pos | |- 0 < 2 |
|
| 9 | breq1 | |- ( N = 0 -> ( N < 2 <-> 0 < 2 ) ) |
|
| 10 | 8 9 | mpbiri | |- ( N = 0 -> N < 2 ) |
| 11 | 10 | a1d | |- ( N = 0 -> ( N e. NN0 -> N < 2 ) ) |
| 12 | 1lt2 | |- 1 < 2 |
|
| 13 | breq1 | |- ( N = 1 -> ( N < 2 <-> 1 < 2 ) ) |
|
| 14 | 12 13 | mpbiri | |- ( N = 1 -> N < 2 ) |
| 15 | 14 | a1d | |- ( N = 1 -> ( N e. NN0 -> N < 2 ) ) |
| 16 | 11 15 | jaoi | |- ( ( N = 0 \/ N = 1 ) -> ( N e. NN0 -> N < 2 ) ) |
| 17 | 16 | impcom | |- ( ( N e. NN0 /\ ( N = 0 \/ N = 1 ) ) -> N < 2 ) |
| 18 | nn0re | |- ( N e. NN0 -> N e. RR ) |
|
| 19 | 2re | |- 2 e. RR |
|
| 20 | 18 19 | jctir | |- ( N e. NN0 -> ( N e. RR /\ 2 e. RR ) ) |
| 21 | 20 | adantr | |- ( ( N e. NN0 /\ ( N = 0 \/ N = 1 ) ) -> ( N e. RR /\ 2 e. RR ) ) |
| 22 | ltnle | |- ( ( N e. RR /\ 2 e. RR ) -> ( N < 2 <-> -. 2 <_ N ) ) |
|
| 23 | 21 22 | syl | |- ( ( N e. NN0 /\ ( N = 0 \/ N = 1 ) ) -> ( N < 2 <-> -. 2 <_ N ) ) |
| 24 | 17 23 | mpbid | |- ( ( N e. NN0 /\ ( N = 0 \/ N = 1 ) ) -> -. 2 <_ N ) |
| 25 | 24 | ex | |- ( N e. NN0 -> ( ( N = 0 \/ N = 1 ) -> -. 2 <_ N ) ) |
| 26 | 7 25 | biimtrid | |- ( N e. NN0 -> ( -. ( N =/= 0 /\ N =/= 1 ) -> -. 2 <_ N ) ) |
| 27 | 2 26 | impcon4bid | |- ( N e. NN0 -> ( ( N =/= 0 /\ N =/= 1 ) <-> 2 <_ N ) ) |