This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The half of an even nonnegative integer is a nonnegative integer. (Contributed by AV, 22-Jun-2020) (Revised by AV, 28-Jun-2021) (Proof shortened by AV, 10-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nn0ehalf | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 2 ∥ 𝑁 ) → ( 𝑁 / 2 ) ∈ ℕ0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0z | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) | |
| 2 | evend2 | ⊢ ( 𝑁 ∈ ℤ → ( 2 ∥ 𝑁 ↔ ( 𝑁 / 2 ) ∈ ℤ ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝑁 ∈ ℕ0 → ( 2 ∥ 𝑁 ↔ ( 𝑁 / 2 ) ∈ ℤ ) ) |
| 4 | nn0re | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) | |
| 5 | 2rp | ⊢ 2 ∈ ℝ+ | |
| 6 | 5 | a1i | ⊢ ( 𝑁 ∈ ℕ0 → 2 ∈ ℝ+ ) |
| 7 | nn0ge0 | ⊢ ( 𝑁 ∈ ℕ0 → 0 ≤ 𝑁 ) | |
| 8 | 4 6 7 | divge0d | ⊢ ( 𝑁 ∈ ℕ0 → 0 ≤ ( 𝑁 / 2 ) ) |
| 9 | 8 | anim1ci | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑁 / 2 ) ∈ ℤ ) → ( ( 𝑁 / 2 ) ∈ ℤ ∧ 0 ≤ ( 𝑁 / 2 ) ) ) |
| 10 | elnn0z | ⊢ ( ( 𝑁 / 2 ) ∈ ℕ0 ↔ ( ( 𝑁 / 2 ) ∈ ℤ ∧ 0 ≤ ( 𝑁 / 2 ) ) ) | |
| 11 | 9 10 | sylibr | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑁 / 2 ) ∈ ℤ ) → ( 𝑁 / 2 ) ∈ ℕ0 ) |
| 12 | 11 | ex | ⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 / 2 ) ∈ ℤ → ( 𝑁 / 2 ) ∈ ℕ0 ) ) |
| 13 | 3 12 | sylbid | ⊢ ( 𝑁 ∈ ℕ0 → ( 2 ∥ 𝑁 → ( 𝑁 / 2 ) ∈ ℕ0 ) ) |
| 14 | 13 | imp | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 2 ∥ 𝑁 ) → ( 𝑁 / 2 ) ∈ ℕ0 ) |