This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The half of an even nonnegative integer is a nonnegative integer. (Contributed by AV, 22-Jun-2020) (Revised by AV, 28-Jun-2021) (Proof shortened by AV, 10-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nn0ehalf | |- ( ( N e. NN0 /\ 2 || N ) -> ( N / 2 ) e. NN0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0z | |- ( N e. NN0 -> N e. ZZ ) |
|
| 2 | evend2 | |- ( N e. ZZ -> ( 2 || N <-> ( N / 2 ) e. ZZ ) ) |
|
| 3 | 1 2 | syl | |- ( N e. NN0 -> ( 2 || N <-> ( N / 2 ) e. ZZ ) ) |
| 4 | nn0re | |- ( N e. NN0 -> N e. RR ) |
|
| 5 | 2rp | |- 2 e. RR+ |
|
| 6 | 5 | a1i | |- ( N e. NN0 -> 2 e. RR+ ) |
| 7 | nn0ge0 | |- ( N e. NN0 -> 0 <_ N ) |
|
| 8 | 4 6 7 | divge0d | |- ( N e. NN0 -> 0 <_ ( N / 2 ) ) |
| 9 | 8 | anim1ci | |- ( ( N e. NN0 /\ ( N / 2 ) e. ZZ ) -> ( ( N / 2 ) e. ZZ /\ 0 <_ ( N / 2 ) ) ) |
| 10 | elnn0z | |- ( ( N / 2 ) e. NN0 <-> ( ( N / 2 ) e. ZZ /\ 0 <_ ( N / 2 ) ) ) |
|
| 11 | 9 10 | sylibr | |- ( ( N e. NN0 /\ ( N / 2 ) e. ZZ ) -> ( N / 2 ) e. NN0 ) |
| 12 | 11 | ex | |- ( N e. NN0 -> ( ( N / 2 ) e. ZZ -> ( N / 2 ) e. NN0 ) ) |
| 13 | 3 12 | sylbid | |- ( N e. NN0 -> ( 2 || N -> ( N / 2 ) e. NN0 ) ) |
| 14 | 13 | imp | |- ( ( N e. NN0 /\ 2 || N ) -> ( N / 2 ) e. NN0 ) |