This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of the difference between two elements. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmf.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| nmf.n | ⊢ 𝑁 = ( norm ‘ 𝐺 ) | ||
| nmmtri.m | ⊢ − = ( -g ‘ 𝐺 ) | ||
| Assertion | nmsub | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 − 𝐵 ) ) = ( 𝑁 ‘ ( 𝐵 − 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmf.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | nmf.n | ⊢ 𝑁 = ( norm ‘ 𝐺 ) | |
| 3 | nmmtri.m | ⊢ − = ( -g ‘ 𝐺 ) | |
| 4 | simp1 | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐺 ∈ NrmGrp ) | |
| 5 | ngpgrp | ⊢ ( 𝐺 ∈ NrmGrp → 𝐺 ∈ Grp ) | |
| 6 | 4 5 | syl | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐺 ∈ Grp ) |
| 7 | simp3 | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐵 ∈ 𝑋 ) | |
| 8 | simp2 | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐴 ∈ 𝑋 ) | |
| 9 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 10 | 1 3 9 | grpinvsub | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝐵 − 𝐴 ) ) = ( 𝐴 − 𝐵 ) ) |
| 11 | 6 7 8 10 | syl3anc | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝐵 − 𝐴 ) ) = ( 𝐴 − 𝐵 ) ) |
| 12 | 11 | fveq2d | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( ( invg ‘ 𝐺 ) ‘ ( 𝐵 − 𝐴 ) ) ) = ( 𝑁 ‘ ( 𝐴 − 𝐵 ) ) ) |
| 13 | 1 3 | grpsubcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐵 − 𝐴 ) ∈ 𝑋 ) |
| 14 | 6 7 8 13 | syl3anc | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐵 − 𝐴 ) ∈ 𝑋 ) |
| 15 | 1 2 9 | nminv | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ ( 𝐵 − 𝐴 ) ∈ 𝑋 ) → ( 𝑁 ‘ ( ( invg ‘ 𝐺 ) ‘ ( 𝐵 − 𝐴 ) ) ) = ( 𝑁 ‘ ( 𝐵 − 𝐴 ) ) ) |
| 16 | 4 14 15 | syl2anc | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( ( invg ‘ 𝐺 ) ‘ ( 𝐵 − 𝐴 ) ) ) = ( 𝑁 ‘ ( 𝐵 − 𝐴 ) ) ) |
| 17 | 12 16 | eqtr3d | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 − 𝐵 ) ) = ( 𝑁 ‘ ( 𝐵 − 𝐴 ) ) ) |