This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of the difference between two elements. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmf.x | |- X = ( Base ` G ) |
|
| nmf.n | |- N = ( norm ` G ) |
||
| nmmtri.m | |- .- = ( -g ` G ) |
||
| Assertion | nmsub | |- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( N ` ( A .- B ) ) = ( N ` ( B .- A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmf.x | |- X = ( Base ` G ) |
|
| 2 | nmf.n | |- N = ( norm ` G ) |
|
| 3 | nmmtri.m | |- .- = ( -g ` G ) |
|
| 4 | simp1 | |- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> G e. NrmGrp ) |
|
| 5 | ngpgrp | |- ( G e. NrmGrp -> G e. Grp ) |
|
| 6 | 4 5 | syl | |- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> G e. Grp ) |
| 7 | simp3 | |- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> B e. X ) |
|
| 8 | simp2 | |- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> A e. X ) |
|
| 9 | eqid | |- ( invg ` G ) = ( invg ` G ) |
|
| 10 | 1 3 9 | grpinvsub | |- ( ( G e. Grp /\ B e. X /\ A e. X ) -> ( ( invg ` G ) ` ( B .- A ) ) = ( A .- B ) ) |
| 11 | 6 7 8 10 | syl3anc | |- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( ( invg ` G ) ` ( B .- A ) ) = ( A .- B ) ) |
| 12 | 11 | fveq2d | |- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( N ` ( ( invg ` G ) ` ( B .- A ) ) ) = ( N ` ( A .- B ) ) ) |
| 13 | 1 3 | grpsubcl | |- ( ( G e. Grp /\ B e. X /\ A e. X ) -> ( B .- A ) e. X ) |
| 14 | 6 7 8 13 | syl3anc | |- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( B .- A ) e. X ) |
| 15 | 1 2 9 | nminv | |- ( ( G e. NrmGrp /\ ( B .- A ) e. X ) -> ( N ` ( ( invg ` G ) ` ( B .- A ) ) ) = ( N ` ( B .- A ) ) ) |
| 16 | 4 14 15 | syl2anc | |- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( N ` ( ( invg ` G ) ` ( B .- A ) ) ) = ( N ` ( B .- A ) ) ) |
| 17 | 12 16 | eqtr3d | |- ( ( G e. NrmGrp /\ A e. X /\ B e. X ) -> ( N ` ( A .- B ) ) = ( N ` ( B .- A ) ) ) |