This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The square of the norm is the norm of an inner product in a subcomplex pre-Hilbert space. (Contributed by Mario Carneiro, 7-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmsq.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| nmsq.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | ||
| nmsq.n | ⊢ 𝑁 = ( norm ‘ 𝑊 ) | ||
| Assertion | cphnm | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ) → ( 𝑁 ‘ 𝐴 ) = ( √ ‘ ( 𝐴 , 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmsq.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | nmsq.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | |
| 3 | nmsq.n | ⊢ 𝑁 = ( norm ‘ 𝑊 ) | |
| 4 | 1 2 3 | cphnmfval | ⊢ ( 𝑊 ∈ ℂPreHil → 𝑁 = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) |
| 5 | 4 | fveq1d | ⊢ ( 𝑊 ∈ ℂPreHil → ( 𝑁 ‘ 𝐴 ) = ( ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ‘ 𝐴 ) ) |
| 6 | oveq12 | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑥 = 𝐴 ) → ( 𝑥 , 𝑥 ) = ( 𝐴 , 𝐴 ) ) | |
| 7 | 6 | anidms | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 , 𝑥 ) = ( 𝐴 , 𝐴 ) ) |
| 8 | 7 | fveq2d | ⊢ ( 𝑥 = 𝐴 → ( √ ‘ ( 𝑥 , 𝑥 ) ) = ( √ ‘ ( 𝐴 , 𝐴 ) ) ) |
| 9 | eqid | ⊢ ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) | |
| 10 | fvex | ⊢ ( √ ‘ ( 𝐴 , 𝐴 ) ) ∈ V | |
| 11 | 8 9 10 | fvmpt | ⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ‘ 𝐴 ) = ( √ ‘ ( 𝐴 , 𝐴 ) ) ) |
| 12 | 5 11 | sylan9eq | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ) → ( 𝑁 ‘ 𝐴 ) = ( √ ‘ ( 𝐴 , 𝐴 ) ) ) |