This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An unbounded operator determines an unbounded sequence. (Contributed by NM, 11-Jan-2008) (Revised by Mario Carneiro, 7-Apr-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmoubi.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| nmoubi.y | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | ||
| nmoubi.l | ⊢ 𝐿 = ( normCV ‘ 𝑈 ) | ||
| nmoubi.m | ⊢ 𝑀 = ( normCV ‘ 𝑊 ) | ||
| nmoubi.3 | ⊢ 𝑁 = ( 𝑈 normOpOLD 𝑊 ) | ||
| nmoubi.u | ⊢ 𝑈 ∈ NrmCVec | ||
| nmoubi.w | ⊢ 𝑊 ∈ NrmCVec | ||
| Assertion | nmounbseqi | ⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ ( 𝑁 ‘ 𝑇 ) = +∞ ) → ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑋 ∧ ∀ 𝑘 ∈ ℕ ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 ∧ 𝑘 < ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmoubi.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | nmoubi.y | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | |
| 3 | nmoubi.l | ⊢ 𝐿 = ( normCV ‘ 𝑈 ) | |
| 4 | nmoubi.m | ⊢ 𝑀 = ( normCV ‘ 𝑊 ) | |
| 5 | nmoubi.3 | ⊢ 𝑁 = ( 𝑈 normOpOLD 𝑊 ) | |
| 6 | nmoubi.u | ⊢ 𝑈 ∈ NrmCVec | |
| 7 | nmoubi.w | ⊢ 𝑊 ∈ NrmCVec | |
| 8 | 1 2 3 4 5 6 7 | nmounbi | ⊢ ( 𝑇 : 𝑋 ⟶ 𝑌 → ( ( 𝑁 ‘ 𝑇 ) = +∞ ↔ ∀ 𝑘 ∈ ℝ ∃ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ 𝑘 < ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) ) |
| 9 | 8 | biimpa | ⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ ( 𝑁 ‘ 𝑇 ) = +∞ ) → ∀ 𝑘 ∈ ℝ ∃ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ 𝑘 < ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) |
| 10 | nnre | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ ) | |
| 11 | 10 | imim1i | ⊢ ( ( 𝑘 ∈ ℝ → ∃ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ 𝑘 < ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) → ( 𝑘 ∈ ℕ → ∃ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ 𝑘 < ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) ) |
| 12 | 11 | ralimi2 | ⊢ ( ∀ 𝑘 ∈ ℝ ∃ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ 𝑘 < ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) → ∀ 𝑘 ∈ ℕ ∃ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ 𝑘 < ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) |
| 13 | 1 | fvexi | ⊢ 𝑋 ∈ V |
| 14 | nnenom | ⊢ ℕ ≈ ω | |
| 15 | fveq2 | ⊢ ( 𝑦 = ( 𝑓 ‘ 𝑘 ) → ( 𝐿 ‘ 𝑦 ) = ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ) | |
| 16 | 15 | breq1d | ⊢ ( 𝑦 = ( 𝑓 ‘ 𝑘 ) → ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ↔ ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 ) ) |
| 17 | 2fveq3 | ⊢ ( 𝑦 = ( 𝑓 ‘ 𝑘 ) → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) = ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) | |
| 18 | 17 | breq2d | ⊢ ( 𝑦 = ( 𝑓 ‘ 𝑘 ) → ( 𝑘 < ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ↔ 𝑘 < ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) |
| 19 | 16 18 | anbi12d | ⊢ ( 𝑦 = ( 𝑓 ‘ 𝑘 ) → ( ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ 𝑘 < ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ↔ ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 ∧ 𝑘 < ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) ) |
| 20 | 13 14 19 | axcc4 | ⊢ ( ∀ 𝑘 ∈ ℕ ∃ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ 𝑘 < ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) → ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑋 ∧ ∀ 𝑘 ∈ ℕ ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 ∧ 𝑘 < ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) ) |
| 21 | 9 12 20 | 3syl | ⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ ( 𝑁 ‘ 𝑇 ) = +∞ ) → ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑋 ∧ ∀ 𝑘 ∈ ℕ ( ( 𝐿 ‘ ( 𝑓 ‘ 𝑘 ) ) ≤ 1 ∧ 𝑘 < ( 𝑀 ‘ ( 𝑇 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) ) ) |