This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An unbounded operator determines an unbounded sequence. (Contributed by NM, 11-Jan-2008) (Revised by Mario Carneiro, 7-Apr-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmoubi.1 | |- X = ( BaseSet ` U ) |
|
| nmoubi.y | |- Y = ( BaseSet ` W ) |
||
| nmoubi.l | |- L = ( normCV ` U ) |
||
| nmoubi.m | |- M = ( normCV ` W ) |
||
| nmoubi.3 | |- N = ( U normOpOLD W ) |
||
| nmoubi.u | |- U e. NrmCVec |
||
| nmoubi.w | |- W e. NrmCVec |
||
| Assertion | nmounbseqi | |- ( ( T : X --> Y /\ ( N ` T ) = +oo ) -> E. f ( f : NN --> X /\ A. k e. NN ( ( L ` ( f ` k ) ) <_ 1 /\ k < ( M ` ( T ` ( f ` k ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmoubi.1 | |- X = ( BaseSet ` U ) |
|
| 2 | nmoubi.y | |- Y = ( BaseSet ` W ) |
|
| 3 | nmoubi.l | |- L = ( normCV ` U ) |
|
| 4 | nmoubi.m | |- M = ( normCV ` W ) |
|
| 5 | nmoubi.3 | |- N = ( U normOpOLD W ) |
|
| 6 | nmoubi.u | |- U e. NrmCVec |
|
| 7 | nmoubi.w | |- W e. NrmCVec |
|
| 8 | 1 2 3 4 5 6 7 | nmounbi | |- ( T : X --> Y -> ( ( N ` T ) = +oo <-> A. k e. RR E. y e. X ( ( L ` y ) <_ 1 /\ k < ( M ` ( T ` y ) ) ) ) ) |
| 9 | 8 | biimpa | |- ( ( T : X --> Y /\ ( N ` T ) = +oo ) -> A. k e. RR E. y e. X ( ( L ` y ) <_ 1 /\ k < ( M ` ( T ` y ) ) ) ) |
| 10 | nnre | |- ( k e. NN -> k e. RR ) |
|
| 11 | 10 | imim1i | |- ( ( k e. RR -> E. y e. X ( ( L ` y ) <_ 1 /\ k < ( M ` ( T ` y ) ) ) ) -> ( k e. NN -> E. y e. X ( ( L ` y ) <_ 1 /\ k < ( M ` ( T ` y ) ) ) ) ) |
| 12 | 11 | ralimi2 | |- ( A. k e. RR E. y e. X ( ( L ` y ) <_ 1 /\ k < ( M ` ( T ` y ) ) ) -> A. k e. NN E. y e. X ( ( L ` y ) <_ 1 /\ k < ( M ` ( T ` y ) ) ) ) |
| 13 | 1 | fvexi | |- X e. _V |
| 14 | nnenom | |- NN ~~ _om |
|
| 15 | fveq2 | |- ( y = ( f ` k ) -> ( L ` y ) = ( L ` ( f ` k ) ) ) |
|
| 16 | 15 | breq1d | |- ( y = ( f ` k ) -> ( ( L ` y ) <_ 1 <-> ( L ` ( f ` k ) ) <_ 1 ) ) |
| 17 | 2fveq3 | |- ( y = ( f ` k ) -> ( M ` ( T ` y ) ) = ( M ` ( T ` ( f ` k ) ) ) ) |
|
| 18 | 17 | breq2d | |- ( y = ( f ` k ) -> ( k < ( M ` ( T ` y ) ) <-> k < ( M ` ( T ` ( f ` k ) ) ) ) ) |
| 19 | 16 18 | anbi12d | |- ( y = ( f ` k ) -> ( ( ( L ` y ) <_ 1 /\ k < ( M ` ( T ` y ) ) ) <-> ( ( L ` ( f ` k ) ) <_ 1 /\ k < ( M ` ( T ` ( f ` k ) ) ) ) ) ) |
| 20 | 13 14 19 | axcc4 | |- ( A. k e. NN E. y e. X ( ( L ` y ) <_ 1 /\ k < ( M ` ( T ` y ) ) ) -> E. f ( f : NN --> X /\ A. k e. NN ( ( L ` ( f ` k ) ) <_ 1 /\ k < ( M ` ( T ` ( f ` k ) ) ) ) ) ) |
| 21 | 9 12 20 | 3syl | |- ( ( T : X --> Y /\ ( N ` T ) = +oo ) -> E. f ( f : NN --> X /\ A. k e. NN ( ( L ` ( f ` k ) ) <_ 1 /\ k < ( M ` ( T ` ( f ` k ) ) ) ) ) ) |