This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set in the supremum of the operator norm definition df-nmop is nonempty. (Contributed by NM, 9-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nmopsetn0 | ⊢ ( normℎ ‘ ( 𝑇 ‘ 0ℎ ) ) ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hv0cl | ⊢ 0ℎ ∈ ℋ | |
| 2 | norm0 | ⊢ ( normℎ ‘ 0ℎ ) = 0 | |
| 3 | 0le1 | ⊢ 0 ≤ 1 | |
| 4 | 2 3 | eqbrtri | ⊢ ( normℎ ‘ 0ℎ ) ≤ 1 |
| 5 | eqid | ⊢ ( normℎ ‘ ( 𝑇 ‘ 0ℎ ) ) = ( normℎ ‘ ( 𝑇 ‘ 0ℎ ) ) | |
| 6 | 4 5 | pm3.2i | ⊢ ( ( normℎ ‘ 0ℎ ) ≤ 1 ∧ ( normℎ ‘ ( 𝑇 ‘ 0ℎ ) ) = ( normℎ ‘ ( 𝑇 ‘ 0ℎ ) ) ) |
| 7 | fveq2 | ⊢ ( 𝑦 = 0ℎ → ( normℎ ‘ 𝑦 ) = ( normℎ ‘ 0ℎ ) ) | |
| 8 | 7 | breq1d | ⊢ ( 𝑦 = 0ℎ → ( ( normℎ ‘ 𝑦 ) ≤ 1 ↔ ( normℎ ‘ 0ℎ ) ≤ 1 ) ) |
| 9 | 2fveq3 | ⊢ ( 𝑦 = 0ℎ → ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) = ( normℎ ‘ ( 𝑇 ‘ 0ℎ ) ) ) | |
| 10 | 9 | eqeq2d | ⊢ ( 𝑦 = 0ℎ → ( ( normℎ ‘ ( 𝑇 ‘ 0ℎ ) ) = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ↔ ( normℎ ‘ ( 𝑇 ‘ 0ℎ ) ) = ( normℎ ‘ ( 𝑇 ‘ 0ℎ ) ) ) ) |
| 11 | 8 10 | anbi12d | ⊢ ( 𝑦 = 0ℎ → ( ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ ( normℎ ‘ ( 𝑇 ‘ 0ℎ ) ) = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) ↔ ( ( normℎ ‘ 0ℎ ) ≤ 1 ∧ ( normℎ ‘ ( 𝑇 ‘ 0ℎ ) ) = ( normℎ ‘ ( 𝑇 ‘ 0ℎ ) ) ) ) ) |
| 12 | 11 | rspcev | ⊢ ( ( 0ℎ ∈ ℋ ∧ ( ( normℎ ‘ 0ℎ ) ≤ 1 ∧ ( normℎ ‘ ( 𝑇 ‘ 0ℎ ) ) = ( normℎ ‘ ( 𝑇 ‘ 0ℎ ) ) ) ) → ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ ( normℎ ‘ ( 𝑇 ‘ 0ℎ ) ) = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) |
| 13 | 1 6 12 | mp2an | ⊢ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ ( normℎ ‘ ( 𝑇 ‘ 0ℎ ) ) = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) |
| 14 | fvex | ⊢ ( normℎ ‘ ( 𝑇 ‘ 0ℎ ) ) ∈ V | |
| 15 | eqeq1 | ⊢ ( 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 0ℎ ) ) → ( 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ↔ ( normℎ ‘ ( 𝑇 ‘ 0ℎ ) ) = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) | |
| 16 | 15 | anbi2d | ⊢ ( 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 0ℎ ) ) → ( ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) ↔ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ ( normℎ ‘ ( 𝑇 ‘ 0ℎ ) ) = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) ) |
| 17 | 16 | rexbidv | ⊢ ( 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 0ℎ ) ) → ( ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) ↔ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ ( normℎ ‘ ( 𝑇 ‘ 0ℎ ) ) = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) ) |
| 18 | 14 17 | elab | ⊢ ( ( normℎ ‘ ( 𝑇 ‘ 0ℎ ) ) ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ↔ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ ( normℎ ‘ ( 𝑇 ‘ 0ℎ ) ) = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) |
| 19 | 13 18 | mpbir | ⊢ ( normℎ ‘ ( 𝑇 ‘ 0ℎ ) ) ∈ { 𝑥 ∣ ∃ 𝑦 ∈ ℋ ( ( normℎ ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( normℎ ‘ ( 𝑇 ‘ 𝑦 ) ) ) } |