This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the operator norm. (Contributed by Mario Carneiro, 18-Oct-2015) (Revised by AV, 26-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmofval.1 | ⊢ 𝑁 = ( 𝑆 normOp 𝑇 ) | |
| nmofval.2 | ⊢ 𝑉 = ( Base ‘ 𝑆 ) | ||
| nmofval.3 | ⊢ 𝐿 = ( norm ‘ 𝑆 ) | ||
| nmofval.4 | ⊢ 𝑀 = ( norm ‘ 𝑇 ) | ||
| Assertion | nmoval | ⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ( 𝑁 ‘ 𝐹 ) = inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } , ℝ* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmofval.1 | ⊢ 𝑁 = ( 𝑆 normOp 𝑇 ) | |
| 2 | nmofval.2 | ⊢ 𝑉 = ( Base ‘ 𝑆 ) | |
| 3 | nmofval.3 | ⊢ 𝐿 = ( norm ‘ 𝑆 ) | |
| 4 | nmofval.4 | ⊢ 𝑀 = ( norm ‘ 𝑇 ) | |
| 5 | 1 2 3 4 | nmofval | ⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) → 𝑁 = ( 𝑓 ∈ ( 𝑆 GrpHom 𝑇 ) ↦ inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } , ℝ* , < ) ) ) |
| 6 | 5 | fveq1d | ⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) → ( 𝑁 ‘ 𝐹 ) = ( ( 𝑓 ∈ ( 𝑆 GrpHom 𝑇 ) ↦ inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } , ℝ* , < ) ) ‘ 𝐹 ) ) |
| 7 | fveq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 8 | 7 | fveq2d | ⊢ ( 𝑓 = 𝐹 → ( 𝑀 ‘ ( 𝑓 ‘ 𝑥 ) ) = ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 9 | 8 | breq1d | ⊢ ( 𝑓 = 𝐹 → ( ( 𝑀 ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) ↔ ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) ) ) |
| 10 | 9 | ralbidv | ⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) ↔ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) ) ) |
| 11 | 10 | rabbidv | ⊢ ( 𝑓 = 𝐹 → { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } = { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } ) |
| 12 | 11 | infeq1d | ⊢ ( 𝑓 = 𝐹 → inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } , ℝ* , < ) = inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } , ℝ* , < ) ) |
| 13 | eqid | ⊢ ( 𝑓 ∈ ( 𝑆 GrpHom 𝑇 ) ↦ inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } , ℝ* , < ) ) = ( 𝑓 ∈ ( 𝑆 GrpHom 𝑇 ) ↦ inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } , ℝ* , < ) ) | |
| 14 | xrltso | ⊢ < Or ℝ* | |
| 15 | 14 | infex | ⊢ inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } , ℝ* , < ) ∈ V |
| 16 | 12 13 15 | fvmpt | ⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → ( ( 𝑓 ∈ ( 𝑆 GrpHom 𝑇 ) ↦ inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } , ℝ* , < ) ) ‘ 𝐹 ) = inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } , ℝ* , < ) ) |
| 17 | 6 16 | sylan9eq | ⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ( 𝑁 ‘ 𝐹 ) = inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } , ℝ* , < ) ) |
| 18 | 17 | 3impa | ⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ( 𝑁 ‘ 𝐹 ) = inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } , ℝ* , < ) ) |