This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Universal quantification over a restricted class abstraction. (Contributed by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ralab2.1 | ⊢ ( 𝑥 = 𝑦 → ( 𝜓 ↔ 𝜒 ) ) | |
| Assertion | ralrab2 | ⊢ ( ∀ 𝑥 ∈ { 𝑦 ∈ 𝐴 ∣ 𝜑 } 𝜓 ↔ ∀ 𝑦 ∈ 𝐴 ( 𝜑 → 𝜒 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralab2.1 | ⊢ ( 𝑥 = 𝑦 → ( 𝜓 ↔ 𝜒 ) ) | |
| 2 | df-rab | ⊢ { 𝑦 ∈ 𝐴 ∣ 𝜑 } = { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝜑 ) } | |
| 3 | 2 | raleqi | ⊢ ( ∀ 𝑥 ∈ { 𝑦 ∈ 𝐴 ∣ 𝜑 } 𝜓 ↔ ∀ 𝑥 ∈ { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝜑 ) } 𝜓 ) |
| 4 | 1 | ralab2 | ⊢ ( ∀ 𝑥 ∈ { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝜑 ) } 𝜓 ↔ ∀ 𝑦 ( ( 𝑦 ∈ 𝐴 ∧ 𝜑 ) → 𝜒 ) ) |
| 5 | impexp | ⊢ ( ( ( 𝑦 ∈ 𝐴 ∧ 𝜑 ) → 𝜒 ) ↔ ( 𝑦 ∈ 𝐴 → ( 𝜑 → 𝜒 ) ) ) | |
| 6 | 5 | albii | ⊢ ( ∀ 𝑦 ( ( 𝑦 ∈ 𝐴 ∧ 𝜑 ) → 𝜒 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐴 → ( 𝜑 → 𝜒 ) ) ) |
| 7 | df-ral | ⊢ ( ∀ 𝑦 ∈ 𝐴 ( 𝜑 → 𝜒 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐴 → ( 𝜑 → 𝜒 ) ) ) | |
| 8 | 6 7 | bitr4i | ⊢ ( ∀ 𝑦 ( ( 𝑦 ∈ 𝐴 ∧ 𝜑 ) → 𝜒 ) ↔ ∀ 𝑦 ∈ 𝐴 ( 𝜑 → 𝜒 ) ) |
| 9 | 3 4 8 | 3bitri | ⊢ ( ∀ 𝑥 ∈ { 𝑦 ∈ 𝐴 ∣ 𝜑 } 𝜓 ↔ ∀ 𝑦 ∈ 𝐴 ( 𝜑 → 𝜒 ) ) |