This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the operator norm. (Contributed by Mario Carneiro, 18-Oct-2015) (Revised by AV, 26-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmofval.1 | ⊢ 𝑁 = ( 𝑆 normOp 𝑇 ) | |
| nmofval.2 | ⊢ 𝑉 = ( Base ‘ 𝑆 ) | ||
| nmofval.3 | ⊢ 𝐿 = ( norm ‘ 𝑆 ) | ||
| nmofval.4 | ⊢ 𝑀 = ( norm ‘ 𝑇 ) | ||
| Assertion | nmofval | ⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) → 𝑁 = ( 𝑓 ∈ ( 𝑆 GrpHom 𝑇 ) ↦ inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } , ℝ* , < ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmofval.1 | ⊢ 𝑁 = ( 𝑆 normOp 𝑇 ) | |
| 2 | nmofval.2 | ⊢ 𝑉 = ( Base ‘ 𝑆 ) | |
| 3 | nmofval.3 | ⊢ 𝐿 = ( norm ‘ 𝑆 ) | |
| 4 | nmofval.4 | ⊢ 𝑀 = ( norm ‘ 𝑇 ) | |
| 5 | oveq12 | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → ( 𝑠 GrpHom 𝑡 ) = ( 𝑆 GrpHom 𝑇 ) ) | |
| 6 | simpl | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → 𝑠 = 𝑆 ) | |
| 7 | 6 | fveq2d | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → ( Base ‘ 𝑠 ) = ( Base ‘ 𝑆 ) ) |
| 8 | 7 2 | eqtr4di | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → ( Base ‘ 𝑠 ) = 𝑉 ) |
| 9 | simpr | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → 𝑡 = 𝑇 ) | |
| 10 | 9 | fveq2d | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → ( norm ‘ 𝑡 ) = ( norm ‘ 𝑇 ) ) |
| 11 | 10 4 | eqtr4di | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → ( norm ‘ 𝑡 ) = 𝑀 ) |
| 12 | 11 | fveq1d | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → ( ( norm ‘ 𝑡 ) ‘ ( 𝑓 ‘ 𝑥 ) ) = ( 𝑀 ‘ ( 𝑓 ‘ 𝑥 ) ) ) |
| 13 | 6 | fveq2d | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → ( norm ‘ 𝑠 ) = ( norm ‘ 𝑆 ) ) |
| 14 | 13 3 | eqtr4di | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → ( norm ‘ 𝑠 ) = 𝐿 ) |
| 15 | 14 | fveq1d | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → ( ( norm ‘ 𝑠 ) ‘ 𝑥 ) = ( 𝐿 ‘ 𝑥 ) ) |
| 16 | 15 | oveq2d | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → ( 𝑟 · ( ( norm ‘ 𝑠 ) ‘ 𝑥 ) ) = ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) ) |
| 17 | 12 16 | breq12d | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → ( ( ( norm ‘ 𝑡 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( ( norm ‘ 𝑠 ) ‘ 𝑥 ) ) ↔ ( 𝑀 ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) ) ) |
| 18 | 8 17 | raleqbidv | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝑠 ) ( ( norm ‘ 𝑡 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( ( norm ‘ 𝑠 ) ‘ 𝑥 ) ) ↔ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) ) ) |
| 19 | 18 | rabbidv | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑠 ) ( ( norm ‘ 𝑡 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( ( norm ‘ 𝑠 ) ‘ 𝑥 ) ) } = { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } ) |
| 20 | 19 | infeq1d | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑠 ) ( ( norm ‘ 𝑡 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( ( norm ‘ 𝑠 ) ‘ 𝑥 ) ) } , ℝ* , < ) = inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } , ℝ* , < ) ) |
| 21 | 5 20 | mpteq12dv | ⊢ ( ( 𝑠 = 𝑆 ∧ 𝑡 = 𝑇 ) → ( 𝑓 ∈ ( 𝑠 GrpHom 𝑡 ) ↦ inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑠 ) ( ( norm ‘ 𝑡 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( ( norm ‘ 𝑠 ) ‘ 𝑥 ) ) } , ℝ* , < ) ) = ( 𝑓 ∈ ( 𝑆 GrpHom 𝑇 ) ↦ inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } , ℝ* , < ) ) ) |
| 22 | df-nmo | ⊢ normOp = ( 𝑠 ∈ NrmGrp , 𝑡 ∈ NrmGrp ↦ ( 𝑓 ∈ ( 𝑠 GrpHom 𝑡 ) ↦ inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑠 ) ( ( norm ‘ 𝑡 ) ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( ( norm ‘ 𝑠 ) ‘ 𝑥 ) ) } , ℝ* , < ) ) ) | |
| 23 | eqid | ⊢ ( 𝑓 ∈ ( 𝑆 GrpHom 𝑇 ) ↦ inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } , ℝ* , < ) ) = ( 𝑓 ∈ ( 𝑆 GrpHom 𝑇 ) ↦ inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } , ℝ* , < ) ) | |
| 24 | ssrab2 | ⊢ { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } ⊆ ( 0 [,) +∞ ) | |
| 25 | icossxr | ⊢ ( 0 [,) +∞ ) ⊆ ℝ* | |
| 26 | 24 25 | sstri | ⊢ { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } ⊆ ℝ* |
| 27 | infxrcl | ⊢ ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } ⊆ ℝ* → inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } , ℝ* , < ) ∈ ℝ* ) | |
| 28 | 26 27 | mp1i | ⊢ ( 𝑓 ∈ ( 𝑆 GrpHom 𝑇 ) → inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } , ℝ* , < ) ∈ ℝ* ) |
| 29 | 23 28 | fmpti | ⊢ ( 𝑓 ∈ ( 𝑆 GrpHom 𝑇 ) ↦ inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } , ℝ* , < ) ) : ( 𝑆 GrpHom 𝑇 ) ⟶ ℝ* |
| 30 | ovex | ⊢ ( 𝑆 GrpHom 𝑇 ) ∈ V | |
| 31 | xrex | ⊢ ℝ* ∈ V | |
| 32 | fex2 | ⊢ ( ( ( 𝑓 ∈ ( 𝑆 GrpHom 𝑇 ) ↦ inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } , ℝ* , < ) ) : ( 𝑆 GrpHom 𝑇 ) ⟶ ℝ* ∧ ( 𝑆 GrpHom 𝑇 ) ∈ V ∧ ℝ* ∈ V ) → ( 𝑓 ∈ ( 𝑆 GrpHom 𝑇 ) ↦ inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } , ℝ* , < ) ) ∈ V ) | |
| 33 | 29 30 31 32 | mp3an | ⊢ ( 𝑓 ∈ ( 𝑆 GrpHom 𝑇 ) ↦ inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } , ℝ* , < ) ) ∈ V |
| 34 | 21 22 33 | ovmpoa | ⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) → ( 𝑆 normOp 𝑇 ) = ( 𝑓 ∈ ( 𝑆 GrpHom 𝑇 ) ↦ inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } , ℝ* , < ) ) ) |
| 35 | 1 34 | eqtrid | ⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) → 𝑁 = ( 𝑓 ∈ ( 𝑆 GrpHom 𝑇 ) ↦ inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝑓 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } , ℝ* , < ) ) ) |