This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of a unit is nonzero in a nonzero normed ring. (Contributed by Mario Carneiro, 5-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nminvr.n | ⊢ 𝑁 = ( norm ‘ 𝑅 ) | |
| nminvr.u | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | ||
| Assertion | unitnmn0 | ⊢ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴 ∈ 𝑈 ) → ( 𝑁 ‘ 𝐴 ) ≠ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nminvr.n | ⊢ 𝑁 = ( norm ‘ 𝑅 ) | |
| 2 | nminvr.u | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
| 3 | nrgngp | ⊢ ( 𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp ) | |
| 4 | 3 | 3ad2ant1 | ⊢ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴 ∈ 𝑈 ) → 𝑅 ∈ NrmGrp ) |
| 5 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 6 | 5 2 | unitcl | ⊢ ( 𝐴 ∈ 𝑈 → 𝐴 ∈ ( Base ‘ 𝑅 ) ) |
| 7 | 6 | 3ad2ant3 | ⊢ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴 ∈ 𝑈 ) → 𝐴 ∈ ( Base ‘ 𝑅 ) ) |
| 8 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 9 | 2 8 | nzrunit | ⊢ ( ( 𝑅 ∈ NzRing ∧ 𝐴 ∈ 𝑈 ) → 𝐴 ≠ ( 0g ‘ 𝑅 ) ) |
| 10 | 9 | 3adant1 | ⊢ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴 ∈ 𝑈 ) → 𝐴 ≠ ( 0g ‘ 𝑅 ) ) |
| 11 | 5 1 8 | nmne0 | ⊢ ( ( 𝑅 ∈ NrmGrp ∧ 𝐴 ∈ ( Base ‘ 𝑅 ) ∧ 𝐴 ≠ ( 0g ‘ 𝑅 ) ) → ( 𝑁 ‘ 𝐴 ) ≠ 0 ) |
| 12 | 4 7 10 11 | syl3anc | ⊢ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ NzRing ∧ 𝐴 ∈ 𝑈 ) → ( 𝑁 ‘ 𝐴 ) ≠ 0 ) |