This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of a negated element is the same as the norm of the original element. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmf.x | |- X = ( Base ` G ) |
|
| nmf.n | |- N = ( norm ` G ) |
||
| nminv.i | |- I = ( invg ` G ) |
||
| Assertion | nminv | |- ( ( G e. NrmGrp /\ A e. X ) -> ( N ` ( I ` A ) ) = ( N ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmf.x | |- X = ( Base ` G ) |
|
| 2 | nmf.n | |- N = ( norm ` G ) |
|
| 3 | nminv.i | |- I = ( invg ` G ) |
|
| 4 | ngpgrp | |- ( G e. NrmGrp -> G e. Grp ) |
|
| 5 | 4 | adantr | |- ( ( G e. NrmGrp /\ A e. X ) -> G e. Grp ) |
| 6 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 7 | 1 6 | grpidcl | |- ( G e. Grp -> ( 0g ` G ) e. X ) |
| 8 | 5 7 | syl | |- ( ( G e. NrmGrp /\ A e. X ) -> ( 0g ` G ) e. X ) |
| 9 | eqid | |- ( -g ` G ) = ( -g ` G ) |
|
| 10 | eqid | |- ( dist ` G ) = ( dist ` G ) |
|
| 11 | 2 1 9 10 | ngpdsr | |- ( ( G e. NrmGrp /\ A e. X /\ ( 0g ` G ) e. X ) -> ( A ( dist ` G ) ( 0g ` G ) ) = ( N ` ( ( 0g ` G ) ( -g ` G ) A ) ) ) |
| 12 | 8 11 | mpd3an3 | |- ( ( G e. NrmGrp /\ A e. X ) -> ( A ( dist ` G ) ( 0g ` G ) ) = ( N ` ( ( 0g ` G ) ( -g ` G ) A ) ) ) |
| 13 | 2 1 6 10 | nmval | |- ( A e. X -> ( N ` A ) = ( A ( dist ` G ) ( 0g ` G ) ) ) |
| 14 | 13 | adantl | |- ( ( G e. NrmGrp /\ A e. X ) -> ( N ` A ) = ( A ( dist ` G ) ( 0g ` G ) ) ) |
| 15 | 1 9 3 6 | grpinvval2 | |- ( ( G e. Grp /\ A e. X ) -> ( I ` A ) = ( ( 0g ` G ) ( -g ` G ) A ) ) |
| 16 | 4 15 | sylan | |- ( ( G e. NrmGrp /\ A e. X ) -> ( I ` A ) = ( ( 0g ` G ) ( -g ` G ) A ) ) |
| 17 | 16 | fveq2d | |- ( ( G e. NrmGrp /\ A e. X ) -> ( N ` ( I ` A ) ) = ( N ` ( ( 0g ` G ) ( -g ` G ) A ) ) ) |
| 18 | 12 14 17 | 3eqtr4rd | |- ( ( G e. NrmGrp /\ A e. X ) -> ( N ` ( I ` A ) ) = ( N ` A ) ) |