This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An upper bound for the norm of a functional. (Contributed by NM, 24-May-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nmfnleub2 | ⊢ ( ( 𝑇 : ℋ ⟶ ℂ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ∀ 𝑥 ∈ ℋ ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( normℎ ‘ 𝑥 ) ) ) → ( normfn ‘ 𝑇 ) ≤ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | normcl | ⊢ ( 𝑥 ∈ ℋ → ( normℎ ‘ 𝑥 ) ∈ ℝ ) | |
| 2 | 1 | ad2antlr | ⊢ ( ( ( ( 𝑇 : ℋ ⟶ ℂ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) ∧ 𝑥 ∈ ℋ ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( normℎ ‘ 𝑥 ) ∈ ℝ ) |
| 3 | simpllr | ⊢ ( ( ( ( 𝑇 : ℋ ⟶ ℂ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) ∧ 𝑥 ∈ ℋ ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) | |
| 4 | simpr | ⊢ ( ( ( ( 𝑇 : ℋ ⟶ ℂ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) ∧ 𝑥 ∈ ℋ ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( normℎ ‘ 𝑥 ) ≤ 1 ) | |
| 5 | 1re | ⊢ 1 ∈ ℝ | |
| 6 | lemul2a | ⊢ ( ( ( ( normℎ ‘ 𝑥 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( 𝐴 · ( normℎ ‘ 𝑥 ) ) ≤ ( 𝐴 · 1 ) ) | |
| 7 | 5 6 | mp3anl2 | ⊢ ( ( ( ( normℎ ‘ 𝑥 ) ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( 𝐴 · ( normℎ ‘ 𝑥 ) ) ≤ ( 𝐴 · 1 ) ) |
| 8 | 2 3 4 7 | syl21anc | ⊢ ( ( ( ( 𝑇 : ℋ ⟶ ℂ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) ∧ 𝑥 ∈ ℋ ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( 𝐴 · ( normℎ ‘ 𝑥 ) ) ≤ ( 𝐴 · 1 ) ) |
| 9 | ax-1rid | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 · 1 ) = 𝐴 ) | |
| 10 | 9 | ad2antrl | ⊢ ( ( 𝑇 : ℋ ⟶ ℂ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) → ( 𝐴 · 1 ) = 𝐴 ) |
| 11 | 10 | ad2antrr | ⊢ ( ( ( ( 𝑇 : ℋ ⟶ ℂ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) ∧ 𝑥 ∈ ℋ ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( 𝐴 · 1 ) = 𝐴 ) |
| 12 | 8 11 | breqtrd | ⊢ ( ( ( ( 𝑇 : ℋ ⟶ ℂ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) ∧ 𝑥 ∈ ℋ ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( 𝐴 · ( normℎ ‘ 𝑥 ) ) ≤ 𝐴 ) |
| 13 | ffvelcdm | ⊢ ( ( 𝑇 : ℋ ⟶ ℂ ∧ 𝑥 ∈ ℋ ) → ( 𝑇 ‘ 𝑥 ) ∈ ℂ ) | |
| 14 | 13 | abscld | ⊢ ( ( 𝑇 : ℋ ⟶ ℂ ∧ 𝑥 ∈ ℋ ) → ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) |
| 15 | 14 | adantlr | ⊢ ( ( ( 𝑇 : ℋ ⟶ ℂ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) ∧ 𝑥 ∈ ℋ ) → ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) |
| 16 | remulcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( normℎ ‘ 𝑥 ) ∈ ℝ ) → ( 𝐴 · ( normℎ ‘ 𝑥 ) ) ∈ ℝ ) | |
| 17 | 1 16 | sylan2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑥 ∈ ℋ ) → ( 𝐴 · ( normℎ ‘ 𝑥 ) ) ∈ ℝ ) |
| 18 | 17 | adantlr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ 𝑥 ∈ ℋ ) → ( 𝐴 · ( normℎ ‘ 𝑥 ) ) ∈ ℝ ) |
| 19 | 18 | adantll | ⊢ ( ( ( 𝑇 : ℋ ⟶ ℂ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) ∧ 𝑥 ∈ ℋ ) → ( 𝐴 · ( normℎ ‘ 𝑥 ) ) ∈ ℝ ) |
| 20 | simplrl | ⊢ ( ( ( 𝑇 : ℋ ⟶ ℂ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) ∧ 𝑥 ∈ ℋ ) → 𝐴 ∈ ℝ ) | |
| 21 | letr | ⊢ ( ( ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ∧ ( 𝐴 · ( normℎ ‘ 𝑥 ) ) ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( normℎ ‘ 𝑥 ) ) ∧ ( 𝐴 · ( normℎ ‘ 𝑥 ) ) ≤ 𝐴 ) → ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝐴 ) ) | |
| 22 | 15 19 20 21 | syl3anc | ⊢ ( ( ( 𝑇 : ℋ ⟶ ℂ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) ∧ 𝑥 ∈ ℋ ) → ( ( ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( normℎ ‘ 𝑥 ) ) ∧ ( 𝐴 · ( normℎ ‘ 𝑥 ) ) ≤ 𝐴 ) → ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝐴 ) ) |
| 23 | 22 | adantr | ⊢ ( ( ( ( 𝑇 : ℋ ⟶ ℂ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) ∧ 𝑥 ∈ ℋ ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( ( ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( normℎ ‘ 𝑥 ) ) ∧ ( 𝐴 · ( normℎ ‘ 𝑥 ) ) ≤ 𝐴 ) → ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝐴 ) ) |
| 24 | 12 23 | mpan2d | ⊢ ( ( ( ( 𝑇 : ℋ ⟶ ℂ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) ∧ 𝑥 ∈ ℋ ) ∧ ( normℎ ‘ 𝑥 ) ≤ 1 ) → ( ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( normℎ ‘ 𝑥 ) ) → ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝐴 ) ) |
| 25 | 24 | ex | ⊢ ( ( ( 𝑇 : ℋ ⟶ ℂ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) ∧ 𝑥 ∈ ℋ ) → ( ( normℎ ‘ 𝑥 ) ≤ 1 → ( ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( normℎ ‘ 𝑥 ) ) → ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝐴 ) ) ) |
| 26 | 25 | com23 | ⊢ ( ( ( 𝑇 : ℋ ⟶ ℂ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) ∧ 𝑥 ∈ ℋ ) → ( ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( normℎ ‘ 𝑥 ) ) → ( ( normℎ ‘ 𝑥 ) ≤ 1 → ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝐴 ) ) ) |
| 27 | 26 | ralimdva | ⊢ ( ( 𝑇 : ℋ ⟶ ℂ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) → ( ∀ 𝑥 ∈ ℋ ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( normℎ ‘ 𝑥 ) ) → ∀ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 → ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝐴 ) ) ) |
| 28 | 27 | imp | ⊢ ( ( ( 𝑇 : ℋ ⟶ ℂ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) ∧ ∀ 𝑥 ∈ ℋ ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( normℎ ‘ 𝑥 ) ) ) → ∀ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 → ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝐴 ) ) |
| 29 | rexr | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ* ) | |
| 30 | 29 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → 𝐴 ∈ ℝ* ) |
| 31 | nmfnleub | ⊢ ( ( 𝑇 : ℋ ⟶ ℂ ∧ 𝐴 ∈ ℝ* ) → ( ( normfn ‘ 𝑇 ) ≤ 𝐴 ↔ ∀ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 → ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝐴 ) ) ) | |
| 32 | 30 31 | sylan2 | ⊢ ( ( 𝑇 : ℋ ⟶ ℂ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) → ( ( normfn ‘ 𝑇 ) ≤ 𝐴 ↔ ∀ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 → ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝐴 ) ) ) |
| 33 | 32 | biimpar | ⊢ ( ( ( 𝑇 : ℋ ⟶ ℂ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) ∧ ∀ 𝑥 ∈ ℋ ( ( normℎ ‘ 𝑥 ) ≤ 1 → ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝐴 ) ) → ( normfn ‘ 𝑇 ) ≤ 𝐴 ) |
| 34 | 28 33 | syldan | ⊢ ( ( ( 𝑇 : ℋ ⟶ ℂ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) ∧ ∀ 𝑥 ∈ ℋ ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( normℎ ‘ 𝑥 ) ) ) → ( normfn ‘ 𝑇 ) ≤ 𝐴 ) |
| 35 | 34 | 3impa | ⊢ ( ( 𝑇 : ℋ ⟶ ℂ ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ∀ 𝑥 ∈ ℋ ( abs ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( normℎ ‘ 𝑥 ) ) ) → ( normfn ‘ 𝑇 ) ≤ 𝐴 ) |