This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of any Hilbert space functional is nonnegative. (Contributed by NM, 24-May-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nmfnge0 | ⊢ ( 𝑇 : ℋ ⟶ ℂ → 0 ≤ ( normfn ‘ 𝑇 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-hv0cl | ⊢ 0ℎ ∈ ℋ | |
| 2 | ffvelcdm | ⊢ ( ( 𝑇 : ℋ ⟶ ℂ ∧ 0ℎ ∈ ℋ ) → ( 𝑇 ‘ 0ℎ ) ∈ ℂ ) | |
| 3 | 1 2 | mpan2 | ⊢ ( 𝑇 : ℋ ⟶ ℂ → ( 𝑇 ‘ 0ℎ ) ∈ ℂ ) |
| 4 | 3 | absge0d | ⊢ ( 𝑇 : ℋ ⟶ ℂ → 0 ≤ ( abs ‘ ( 𝑇 ‘ 0ℎ ) ) ) |
| 5 | norm0 | ⊢ ( normℎ ‘ 0ℎ ) = 0 | |
| 6 | 0le1 | ⊢ 0 ≤ 1 | |
| 7 | 5 6 | eqbrtri | ⊢ ( normℎ ‘ 0ℎ ) ≤ 1 |
| 8 | nmfnlb | ⊢ ( ( 𝑇 : ℋ ⟶ ℂ ∧ 0ℎ ∈ ℋ ∧ ( normℎ ‘ 0ℎ ) ≤ 1 ) → ( abs ‘ ( 𝑇 ‘ 0ℎ ) ) ≤ ( normfn ‘ 𝑇 ) ) | |
| 9 | 1 7 8 | mp3an23 | ⊢ ( 𝑇 : ℋ ⟶ ℂ → ( abs ‘ ( 𝑇 ‘ 0ℎ ) ) ≤ ( normfn ‘ 𝑇 ) ) |
| 10 | 3 | abscld | ⊢ ( 𝑇 : ℋ ⟶ ℂ → ( abs ‘ ( 𝑇 ‘ 0ℎ ) ) ∈ ℝ ) |
| 11 | 10 | rexrd | ⊢ ( 𝑇 : ℋ ⟶ ℂ → ( abs ‘ ( 𝑇 ‘ 0ℎ ) ) ∈ ℝ* ) |
| 12 | nmfnxr | ⊢ ( 𝑇 : ℋ ⟶ ℂ → ( normfn ‘ 𝑇 ) ∈ ℝ* ) | |
| 13 | 0xr | ⊢ 0 ∈ ℝ* | |
| 14 | xrletr | ⊢ ( ( 0 ∈ ℝ* ∧ ( abs ‘ ( 𝑇 ‘ 0ℎ ) ) ∈ ℝ* ∧ ( normfn ‘ 𝑇 ) ∈ ℝ* ) → ( ( 0 ≤ ( abs ‘ ( 𝑇 ‘ 0ℎ ) ) ∧ ( abs ‘ ( 𝑇 ‘ 0ℎ ) ) ≤ ( normfn ‘ 𝑇 ) ) → 0 ≤ ( normfn ‘ 𝑇 ) ) ) | |
| 15 | 13 14 | mp3an1 | ⊢ ( ( ( abs ‘ ( 𝑇 ‘ 0ℎ ) ) ∈ ℝ* ∧ ( normfn ‘ 𝑇 ) ∈ ℝ* ) → ( ( 0 ≤ ( abs ‘ ( 𝑇 ‘ 0ℎ ) ) ∧ ( abs ‘ ( 𝑇 ‘ 0ℎ ) ) ≤ ( normfn ‘ 𝑇 ) ) → 0 ≤ ( normfn ‘ 𝑇 ) ) ) |
| 16 | 11 12 15 | syl2anc | ⊢ ( 𝑇 : ℋ ⟶ ℂ → ( ( 0 ≤ ( abs ‘ ( 𝑇 ‘ 0ℎ ) ) ∧ ( abs ‘ ( 𝑇 ‘ 0ℎ ) ) ≤ ( normfn ‘ 𝑇 ) ) → 0 ≤ ( normfn ‘ 𝑇 ) ) ) |
| 17 | 4 9 16 | mp2and | ⊢ ( 𝑇 : ℋ ⟶ ℂ → 0 ≤ ( normfn ‘ 𝑇 ) ) |