This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Write the distance between two points in terms of distance from zero. (Contributed by Mario Carneiro, 2-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ngpds2.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| ngpds2.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| ngpds2.m | ⊢ − = ( -g ‘ 𝐺 ) | ||
| ngpds2.d | ⊢ 𝐷 = ( dist ‘ 𝐺 ) | ||
| Assertion | ngpds2 | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐵 ) = ( ( 𝐴 − 𝐵 ) 𝐷 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ngpds2.x | ⊢ 𝑋 = ( Base ‘ 𝐺 ) | |
| 2 | ngpds2.z | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | ngpds2.m | ⊢ − = ( -g ‘ 𝐺 ) | |
| 4 | ngpds2.d | ⊢ 𝐷 = ( dist ‘ 𝐺 ) | |
| 5 | eqid | ⊢ ( norm ‘ 𝐺 ) = ( norm ‘ 𝐺 ) | |
| 6 | 5 1 3 4 | ngpds | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐵 ) = ( ( norm ‘ 𝐺 ) ‘ ( 𝐴 − 𝐵 ) ) ) |
| 7 | ngpgrp | ⊢ ( 𝐺 ∈ NrmGrp → 𝐺 ∈ Grp ) | |
| 8 | 1 3 | grpsubcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 − 𝐵 ) ∈ 𝑋 ) |
| 9 | 7 8 | syl3an1 | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 − 𝐵 ) ∈ 𝑋 ) |
| 10 | 5 1 2 4 | nmval | ⊢ ( ( 𝐴 − 𝐵 ) ∈ 𝑋 → ( ( norm ‘ 𝐺 ) ‘ ( 𝐴 − 𝐵 ) ) = ( ( 𝐴 − 𝐵 ) 𝐷 0 ) ) |
| 11 | 9 10 | syl | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( norm ‘ 𝐺 ) ‘ ( 𝐴 − 𝐵 ) ) = ( ( 𝐴 − 𝐵 ) 𝐷 0 ) ) |
| 12 | 6 11 | eqtrd | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐵 ) = ( ( 𝐴 − 𝐵 ) 𝐷 0 ) ) |