This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bound variable hypothesis builder for transitive closure. Deduction form. (Contributed by Scott Fenton, 26-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nfttrcld.1 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝑅 ) | |
| Assertion | nfttrcld | ⊢ ( 𝜑 → Ⅎ 𝑥 t++ 𝑅 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfttrcld.1 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝑅 ) | |
| 2 | df-ttrcl | ⊢ t++ 𝑅 = { 〈 𝑦 , 𝑧 〉 ∣ ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) } | |
| 3 | nfv | ⊢ Ⅎ 𝑦 𝜑 | |
| 4 | nfv | ⊢ Ⅎ 𝑧 𝜑 | |
| 5 | nfv | ⊢ Ⅎ 𝑛 𝜑 | |
| 6 | nfcvd | ⊢ ( 𝜑 → Ⅎ 𝑥 ( ω ∖ 1o ) ) | |
| 7 | nfv | ⊢ Ⅎ 𝑓 𝜑 | |
| 8 | nfvd | ⊢ ( 𝜑 → Ⅎ 𝑥 𝑓 Fn suc 𝑛 ) | |
| 9 | nfvd | ⊢ ( 𝜑 → Ⅎ 𝑥 ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ) | |
| 10 | nfv | ⊢ Ⅎ 𝑎 𝜑 | |
| 11 | nfcvd | ⊢ ( 𝜑 → Ⅎ 𝑥 𝑛 ) | |
| 12 | nfcvd | ⊢ ( 𝜑 → Ⅎ 𝑥 ( 𝑓 ‘ 𝑎 ) ) | |
| 13 | nfcvd | ⊢ ( 𝜑 → Ⅎ 𝑥 ( 𝑓 ‘ suc 𝑎 ) ) | |
| 14 | 12 1 13 | nfbrd | ⊢ ( 𝜑 → Ⅎ 𝑥 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) |
| 15 | 10 11 14 | nfraldw | ⊢ ( 𝜑 → Ⅎ 𝑥 ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) |
| 16 | 8 9 15 | nf3and | ⊢ ( 𝜑 → Ⅎ 𝑥 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) |
| 17 | 7 16 | nfexd | ⊢ ( 𝜑 → Ⅎ 𝑥 ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) |
| 18 | 5 6 17 | nfrexdw | ⊢ ( 𝜑 → Ⅎ 𝑥 ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) ) |
| 19 | 3 4 18 | nfopabd | ⊢ ( 𝜑 → Ⅎ 𝑥 { 〈 𝑦 , 𝑧 〉 ∣ ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑦 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑧 ) ∧ ∀ 𝑎 ∈ 𝑛 ( 𝑓 ‘ 𝑎 ) 𝑅 ( 𝑓 ‘ suc 𝑎 ) ) } ) |
| 20 | 2 19 | nfcxfrd | ⊢ ( 𝜑 → Ⅎ 𝑥 t++ 𝑅 ) |