This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction version of nfralw . Version of nfrald with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 15-Feb-2013) Avoid ax-9 , ax-ext . (Revised by GG, 24-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nfraldw.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| nfraldw.2 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 ) | ||
| nfraldw.3 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝜓 ) | ||
| Assertion | nfraldw | ⊢ ( 𝜑 → Ⅎ 𝑥 ∀ 𝑦 ∈ 𝐴 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfraldw.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| 2 | nfraldw.2 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 ) | |
| 3 | nfraldw.3 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝜓 ) | |
| 4 | df-ral | ⊢ ( ∀ 𝑦 ∈ 𝐴 𝜓 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐴 → 𝜓 ) ) | |
| 5 | 2 | nfcrd | ⊢ ( 𝜑 → Ⅎ 𝑥 𝑦 ∈ 𝐴 ) |
| 6 | 5 3 | nfimd | ⊢ ( 𝜑 → Ⅎ 𝑥 ( 𝑦 ∈ 𝐴 → 𝜓 ) ) |
| 7 | 1 6 | nfald | ⊢ ( 𝜑 → Ⅎ 𝑥 ∀ 𝑦 ( 𝑦 ∈ 𝐴 → 𝜓 ) ) |
| 8 | 4 7 | nfxfrd | ⊢ ( 𝜑 → Ⅎ 𝑥 ∀ 𝑦 ∈ 𝐴 𝜓 ) |