This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction version of nfrexw . (Contributed by Mario Carneiro, 14-Oct-2016) Add disjoint variable condition to avoid ax-13 . See nfrexd for a less restrictive version requiring more axioms. (Revised by GG, 20-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nfraldw.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| nfraldw.2 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 ) | ||
| nfraldw.3 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝜓 ) | ||
| Assertion | nfrexdw | ⊢ ( 𝜑 → Ⅎ 𝑥 ∃ 𝑦 ∈ 𝐴 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfraldw.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| 2 | nfraldw.2 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝐴 ) | |
| 3 | nfraldw.3 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝜓 ) | |
| 4 | dfrex2 | ⊢ ( ∃ 𝑦 ∈ 𝐴 𝜓 ↔ ¬ ∀ 𝑦 ∈ 𝐴 ¬ 𝜓 ) | |
| 5 | 3 | nfnd | ⊢ ( 𝜑 → Ⅎ 𝑥 ¬ 𝜓 ) |
| 6 | 1 2 5 | nfraldw | ⊢ ( 𝜑 → Ⅎ 𝑥 ∀ 𝑦 ∈ 𝐴 ¬ 𝜓 ) |
| 7 | 6 | nfnd | ⊢ ( 𝜑 → Ⅎ 𝑥 ¬ ∀ 𝑦 ∈ 𝐴 ¬ 𝜓 ) |
| 8 | 4 7 | nfxfrd | ⊢ ( 𝜑 → Ⅎ 𝑥 ∃ 𝑦 ∈ 𝐴 𝜓 ) |