This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bound variable hypothesis builder for transitive closure. Deduction form. (Contributed by Scott Fenton, 26-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nfttrcld.1 | |- ( ph -> F/_ x R ) |
|
| Assertion | nfttrcld | |- ( ph -> F/_ x t++ R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfttrcld.1 | |- ( ph -> F/_ x R ) |
|
| 2 | df-ttrcl | |- t++ R = { <. y , z >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = y /\ ( f ` n ) = z ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) } |
|
| 3 | nfv | |- F/ y ph |
|
| 4 | nfv | |- F/ z ph |
|
| 5 | nfv | |- F/ n ph |
|
| 6 | nfcvd | |- ( ph -> F/_ x ( _om \ 1o ) ) |
|
| 7 | nfv | |- F/ f ph |
|
| 8 | nfvd | |- ( ph -> F/ x f Fn suc n ) |
|
| 9 | nfvd | |- ( ph -> F/ x ( ( f ` (/) ) = y /\ ( f ` n ) = z ) ) |
|
| 10 | nfv | |- F/ a ph |
|
| 11 | nfcvd | |- ( ph -> F/_ x n ) |
|
| 12 | nfcvd | |- ( ph -> F/_ x ( f ` a ) ) |
|
| 13 | nfcvd | |- ( ph -> F/_ x ( f ` suc a ) ) |
|
| 14 | 12 1 13 | nfbrd | |- ( ph -> F/ x ( f ` a ) R ( f ` suc a ) ) |
| 15 | 10 11 14 | nfraldw | |- ( ph -> F/ x A. a e. n ( f ` a ) R ( f ` suc a ) ) |
| 16 | 8 9 15 | nf3and | |- ( ph -> F/ x ( f Fn suc n /\ ( ( f ` (/) ) = y /\ ( f ` n ) = z ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) |
| 17 | 7 16 | nfexd | |- ( ph -> F/ x E. f ( f Fn suc n /\ ( ( f ` (/) ) = y /\ ( f ` n ) = z ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) |
| 18 | 5 6 17 | nfrexdw | |- ( ph -> F/ x E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = y /\ ( f ` n ) = z ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) ) |
| 19 | 3 4 18 | nfopabd | |- ( ph -> F/_ x { <. y , z >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = y /\ ( f ` n ) = z ) /\ A. a e. n ( f ` a ) R ( f ` suc a ) ) } ) |
| 20 | 2 19 | nfcxfrd | |- ( ph -> F/_ x t++ R ) |