This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bound-variable hypothesis builder for sum. (Contributed by NM, 11-Dec-2005) (Revised by Mario Carneiro, 13-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nfsum1.1 | |- F/_ k A |
|
| Assertion | nfsum1 | |- F/_ k sum_ k e. A B |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfsum1.1 | |- F/_ k A |
|
| 2 | df-sum | |- sum_ k e. A B = ( iota x ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) ) |
|
| 3 | nfcv | |- F/_ k ZZ |
|
| 4 | nfcv | |- F/_ k ( ZZ>= ` m ) |
|
| 5 | 1 4 | nfss | |- F/ k A C_ ( ZZ>= ` m ) |
| 6 | nfcv | |- F/_ k m |
|
| 7 | nfcv | |- F/_ k + |
|
| 8 | 1 | nfcri | |- F/ k n e. A |
| 9 | nfcsb1v | |- F/_ k [_ n / k ]_ B |
|
| 10 | nfcv | |- F/_ k 0 |
|
| 11 | 8 9 10 | nfif | |- F/_ k if ( n e. A , [_ n / k ]_ B , 0 ) |
| 12 | 3 11 | nfmpt | |- F/_ k ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) |
| 13 | 6 7 12 | nfseq | |- F/_ k seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) |
| 14 | nfcv | |- F/_ k ~~> |
|
| 15 | nfcv | |- F/_ k x |
|
| 16 | 13 14 15 | nfbr | |- F/ k seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x |
| 17 | 5 16 | nfan | |- F/ k ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) |
| 18 | 3 17 | nfrexw | |- F/ k E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) |
| 19 | nfcv | |- F/_ k NN |
|
| 20 | nfcv | |- F/_ k f |
|
| 21 | nfcv | |- F/_ k ( 1 ... m ) |
|
| 22 | 20 21 1 | nff1o | |- F/ k f : ( 1 ... m ) -1-1-onto-> A |
| 23 | nfcv | |- F/_ k 1 |
|
| 24 | nfcsb1v | |- F/_ k [_ ( f ` n ) / k ]_ B |
|
| 25 | 19 24 | nfmpt | |- F/_ k ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) |
| 26 | 23 7 25 | nfseq | |- F/_ k seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) |
| 27 | 26 6 | nffv | |- F/_ k ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) |
| 28 | 27 | nfeq2 | |- F/ k x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) |
| 29 | 22 28 | nfan | |- F/ k ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) |
| 30 | 29 | nfex | |- F/ k E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) |
| 31 | 19 30 | nfrexw | |- F/ k E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) |
| 32 | 18 31 | nfor | |- F/ k ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) |
| 33 | 32 | nfiotaw | |- F/_ k ( iota x ( E. m e. ZZ ( A C_ ( ZZ>= ` m ) /\ seq m ( + , ( n e. ZZ |-> if ( n e. A , [_ n / k ]_ B , 0 ) ) ) ~~> x ) \/ E. m e. NN E. f ( f : ( 1 ... m ) -1-1-onto-> A /\ x = ( seq 1 ( + , ( n e. NN |-> [_ ( f ` n ) / k ]_ B ) ) ` m ) ) ) ) |
| 34 | 2 33 | nfcxfr | |- F/_ k sum_ k e. A B |