This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bound-variable hypothesis builder for an integral. (Contributed by Mario Carneiro, 28-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nfitg1 | ⊢ Ⅎ 𝑥 ∫ 𝐴 𝐵 d 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-itg | ⊢ ∫ 𝐴 𝐵 d 𝑥 = Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) / 𝑧 ⦌ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑧 ) , 𝑧 , 0 ) ) ) ) | |
| 2 | nfcv | ⊢ Ⅎ 𝑥 ( 0 ... 3 ) | |
| 3 | nfcv | ⊢ Ⅎ 𝑥 ( i ↑ 𝑘 ) | |
| 4 | nfcv | ⊢ Ⅎ 𝑥 · | |
| 5 | nfcv | ⊢ Ⅎ 𝑥 ∫2 | |
| 6 | nfmpt1 | ⊢ Ⅎ 𝑥 ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) / 𝑧 ⦌ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑧 ) , 𝑧 , 0 ) ) | |
| 7 | 5 6 | nffv | ⊢ Ⅎ 𝑥 ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) / 𝑧 ⦌ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑧 ) , 𝑧 , 0 ) ) ) |
| 8 | 3 4 7 | nfov | ⊢ Ⅎ 𝑥 ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) / 𝑧 ⦌ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑧 ) , 𝑧 , 0 ) ) ) ) |
| 9 | 2 8 | nfsum | ⊢ Ⅎ 𝑥 Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) / 𝑧 ⦌ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑧 ) , 𝑧 , 0 ) ) ) ) |
| 10 | 1 9 | nfcxfr | ⊢ Ⅎ 𝑥 ∫ 𝐴 𝐵 d 𝑥 |