This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bound-variable hypothesis builder for an integral. (Contributed by Mario Carneiro, 28-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nfitg1 | |- F/_ x S. A B _d x |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-itg | |- S. A B _d x = sum_ k e. ( 0 ... 3 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> [_ ( Re ` ( B / ( _i ^ k ) ) ) / z ]_ if ( ( x e. A /\ 0 <_ z ) , z , 0 ) ) ) ) |
|
| 2 | nfcv | |- F/_ x ( 0 ... 3 ) |
|
| 3 | nfcv | |- F/_ x ( _i ^ k ) |
|
| 4 | nfcv | |- F/_ x x. |
|
| 5 | nfcv | |- F/_ x S.2 |
|
| 6 | nfmpt1 | |- F/_ x ( x e. RR |-> [_ ( Re ` ( B / ( _i ^ k ) ) ) / z ]_ if ( ( x e. A /\ 0 <_ z ) , z , 0 ) ) |
|
| 7 | 5 6 | nffv | |- F/_ x ( S.2 ` ( x e. RR |-> [_ ( Re ` ( B / ( _i ^ k ) ) ) / z ]_ if ( ( x e. A /\ 0 <_ z ) , z , 0 ) ) ) |
| 8 | 3 4 7 | nfov | |- F/_ x ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> [_ ( Re ` ( B / ( _i ^ k ) ) ) / z ]_ if ( ( x e. A /\ 0 <_ z ) , z , 0 ) ) ) ) |
| 9 | 2 8 | nfsum | |- F/_ x sum_ k e. ( 0 ... 3 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> [_ ( Re ` ( B / ( _i ^ k ) ) ) / z ]_ if ( ( x e. A /\ 0 <_ z ) , z , 0 ) ) ) ) |
| 10 | 1 9 | nfcxfr | |- F/_ x S. A B _d x |