This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bound-variable hypothesis builder for an integral: if y is (effectively) not free in A and B , it is not free in S. A B _d x . (Contributed by Mario Carneiro, 28-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nfitg.1 | ⊢ Ⅎ 𝑦 𝐴 | |
| nfitg.2 | ⊢ Ⅎ 𝑦 𝐵 | ||
| Assertion | nfitg | ⊢ Ⅎ 𝑦 ∫ 𝐴 𝐵 d 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfitg.1 | ⊢ Ⅎ 𝑦 𝐴 | |
| 2 | nfitg.2 | ⊢ Ⅎ 𝑦 𝐵 | |
| 3 | eqid | ⊢ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) = ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) | |
| 4 | 3 | dfitg | ⊢ ∫ 𝐴 𝐵 d 𝑥 = Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) |
| 5 | nfcv | ⊢ Ⅎ 𝑦 ( 0 ... 3 ) | |
| 6 | nfcv | ⊢ Ⅎ 𝑦 ( i ↑ 𝑘 ) | |
| 7 | nfcv | ⊢ Ⅎ 𝑦 · | |
| 8 | nfcv | ⊢ Ⅎ 𝑦 ∫2 | |
| 9 | nfcv | ⊢ Ⅎ 𝑦 ℝ | |
| 10 | 1 | nfcri | ⊢ Ⅎ 𝑦 𝑥 ∈ 𝐴 |
| 11 | nfcv | ⊢ Ⅎ 𝑦 0 | |
| 12 | nfcv | ⊢ Ⅎ 𝑦 ≤ | |
| 13 | nfcv | ⊢ Ⅎ 𝑦 ℜ | |
| 14 | nfcv | ⊢ Ⅎ 𝑦 / | |
| 15 | 2 14 6 | nfov | ⊢ Ⅎ 𝑦 ( 𝐵 / ( i ↑ 𝑘 ) ) |
| 16 | 13 15 | nffv | ⊢ Ⅎ 𝑦 ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) |
| 17 | 11 12 16 | nfbr | ⊢ Ⅎ 𝑦 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) |
| 18 | 10 17 | nfan | ⊢ Ⅎ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) |
| 19 | 18 16 11 | nfif | ⊢ Ⅎ 𝑦 if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) |
| 20 | 9 19 | nfmpt | ⊢ Ⅎ 𝑦 ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) |
| 21 | 8 20 | nffv | ⊢ Ⅎ 𝑦 ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) |
| 22 | 6 7 21 | nfov | ⊢ Ⅎ 𝑦 ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) |
| 23 | 5 22 | nfsum | ⊢ Ⅎ 𝑦 Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) |
| 24 | 4 23 | nfcxfr | ⊢ Ⅎ 𝑦 ∫ 𝐴 𝐵 d 𝑥 |