This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the full Lebesgue integral, for complex-valued functions to RR . The syntax is designed to be suggestive of the standard notation for integrals. For example, our notation for the integral of x ^ 2 from 0 to 1 is S. ( 0 , 1 ) ( x ^ 2 ) _d x = ( 1 / 3 ) . The only real function of this definition is to break the integral up into nonnegative real parts and send it off to df-itg2 for further processing. Note that this definition cannot handle integrals which evaluate to infinity, because addition and multiplication are not currently defined on extended reals. (You can use df-itg2 directly for this use-case.) (Contributed by Mario Carneiro, 28-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-itg | ⊢ ∫ 𝐴 𝐵 d 𝑥 = Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cA | ⊢ 𝐴 | |
| 1 | cB | ⊢ 𝐵 | |
| 2 | vx | ⊢ 𝑥 | |
| 3 | 2 0 1 | citg | ⊢ ∫ 𝐴 𝐵 d 𝑥 |
| 4 | vk | ⊢ 𝑘 | |
| 5 | cc0 | ⊢ 0 | |
| 6 | cfz | ⊢ ... | |
| 7 | c3 | ⊢ 3 | |
| 8 | 5 7 6 | co | ⊢ ( 0 ... 3 ) |
| 9 | ci | ⊢ i | |
| 10 | cexp | ⊢ ↑ | |
| 11 | 4 | cv | ⊢ 𝑘 |
| 12 | 9 11 10 | co | ⊢ ( i ↑ 𝑘 ) |
| 13 | cmul | ⊢ · | |
| 14 | citg2 | ⊢ ∫2 | |
| 15 | cr | ⊢ ℝ | |
| 16 | cre | ⊢ ℜ | |
| 17 | cdiv | ⊢ / | |
| 18 | 1 12 17 | co | ⊢ ( 𝐵 / ( i ↑ 𝑘 ) ) |
| 19 | 18 16 | cfv | ⊢ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) |
| 20 | vy | ⊢ 𝑦 | |
| 21 | 2 | cv | ⊢ 𝑥 |
| 22 | 21 0 | wcel | ⊢ 𝑥 ∈ 𝐴 |
| 23 | cle | ⊢ ≤ | |
| 24 | 20 | cv | ⊢ 𝑦 |
| 25 | 5 24 23 | wbr | ⊢ 0 ≤ 𝑦 |
| 26 | 22 25 | wa | ⊢ ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦 ) |
| 27 | 26 24 5 | cif | ⊢ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) |
| 28 | 20 19 27 | csb | ⊢ ⦋ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) |
| 29 | 2 15 28 | cmpt | ⊢ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) |
| 30 | 29 14 | cfv | ⊢ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) |
| 31 | 12 30 13 | co | ⊢ ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) ) |
| 32 | 8 31 4 | csu | ⊢ Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) ) |
| 33 | 3 32 | wceq | ⊢ ∫ 𝐴 𝐵 d 𝑥 = Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ ⦋ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) / 𝑦 ⦌ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦 ) , 𝑦 , 0 ) ) ) ) |