This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any neighborhood of a set S is also a neighborhood of any subset R C_ S . Similar to Proposition 1 of BourbakiTop1 p. I.2. (Contributed by FL, 25-Sep-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | neiss | |- ( ( J e. Top /\ N e. ( ( nei ` J ) ` S ) /\ R C_ S ) -> N e. ( ( nei ` J ) ` R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- U. J = U. J |
|
| 2 | 1 | neii1 | |- ( ( J e. Top /\ N e. ( ( nei ` J ) ` S ) ) -> N C_ U. J ) |
| 3 | 2 | 3adant3 | |- ( ( J e. Top /\ N e. ( ( nei ` J ) ` S ) /\ R C_ S ) -> N C_ U. J ) |
| 4 | neii2 | |- ( ( J e. Top /\ N e. ( ( nei ` J ) ` S ) ) -> E. g e. J ( S C_ g /\ g C_ N ) ) |
|
| 5 | 4 | 3adant3 | |- ( ( J e. Top /\ N e. ( ( nei ` J ) ` S ) /\ R C_ S ) -> E. g e. J ( S C_ g /\ g C_ N ) ) |
| 6 | sstr2 | |- ( R C_ S -> ( S C_ g -> R C_ g ) ) |
|
| 7 | 6 | anim1d | |- ( R C_ S -> ( ( S C_ g /\ g C_ N ) -> ( R C_ g /\ g C_ N ) ) ) |
| 8 | 7 | reximdv | |- ( R C_ S -> ( E. g e. J ( S C_ g /\ g C_ N ) -> E. g e. J ( R C_ g /\ g C_ N ) ) ) |
| 9 | 8 | 3ad2ant3 | |- ( ( J e. Top /\ N e. ( ( nei ` J ) ` S ) /\ R C_ S ) -> ( E. g e. J ( S C_ g /\ g C_ N ) -> E. g e. J ( R C_ g /\ g C_ N ) ) ) |
| 10 | 5 9 | mpd | |- ( ( J e. Top /\ N e. ( ( nei ` J ) ` S ) /\ R C_ S ) -> E. g e. J ( R C_ g /\ g C_ N ) ) |
| 11 | simp1 | |- ( ( J e. Top /\ N e. ( ( nei ` J ) ` S ) /\ R C_ S ) -> J e. Top ) |
|
| 12 | simp3 | |- ( ( J e. Top /\ N e. ( ( nei ` J ) ` S ) /\ R C_ S ) -> R C_ S ) |
|
| 13 | 1 | neiss2 | |- ( ( J e. Top /\ N e. ( ( nei ` J ) ` S ) ) -> S C_ U. J ) |
| 14 | 13 | 3adant3 | |- ( ( J e. Top /\ N e. ( ( nei ` J ) ` S ) /\ R C_ S ) -> S C_ U. J ) |
| 15 | 12 14 | sstrd | |- ( ( J e. Top /\ N e. ( ( nei ` J ) ` S ) /\ R C_ S ) -> R C_ U. J ) |
| 16 | 1 | isnei | |- ( ( J e. Top /\ R C_ U. J ) -> ( N e. ( ( nei ` J ) ` R ) <-> ( N C_ U. J /\ E. g e. J ( R C_ g /\ g C_ N ) ) ) ) |
| 17 | 11 15 16 | syl2anc | |- ( ( J e. Top /\ N e. ( ( nei ` J ) ` S ) /\ R C_ S ) -> ( N e. ( ( nei ` J ) ` R ) <-> ( N C_ U. J /\ E. g e. J ( R C_ g /\ g C_ N ) ) ) ) |
| 18 | 3 10 17 | mpbir2and | |- ( ( J e. Top /\ N e. ( ( nei ` J ) ` S ) /\ R C_ S ) -> N e. ( ( nei ` J ) ` R ) ) |