This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A point is a limit point of its neighborhood filter. (Contributed by Jeff Hankins, 7-Sep-2009) (Revised by Stefan O'Rear, 9-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | neiflim | |- ( ( J e. ( TopOn ` X ) /\ A e. X ) -> A e. ( J fLim ( ( nei ` J ) ` { A } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid | |- ( ( nei ` J ) ` { A } ) C_ ( ( nei ` J ) ` { A } ) |
|
| 2 | 1 | jctr | |- ( A e. X -> ( A e. X /\ ( ( nei ` J ) ` { A } ) C_ ( ( nei ` J ) ` { A } ) ) ) |
| 3 | 2 | adantl | |- ( ( J e. ( TopOn ` X ) /\ A e. X ) -> ( A e. X /\ ( ( nei ` J ) ` { A } ) C_ ( ( nei ` J ) ` { A } ) ) ) |
| 4 | simpl | |- ( ( J e. ( TopOn ` X ) /\ A e. X ) -> J e. ( TopOn ` X ) ) |
|
| 5 | snssi | |- ( A e. X -> { A } C_ X ) |
|
| 6 | 5 | adantl | |- ( ( J e. ( TopOn ` X ) /\ A e. X ) -> { A } C_ X ) |
| 7 | snnzg | |- ( A e. X -> { A } =/= (/) ) |
|
| 8 | 7 | adantl | |- ( ( J e. ( TopOn ` X ) /\ A e. X ) -> { A } =/= (/) ) |
| 9 | neifil | |- ( ( J e. ( TopOn ` X ) /\ { A } C_ X /\ { A } =/= (/) ) -> ( ( nei ` J ) ` { A } ) e. ( Fil ` X ) ) |
|
| 10 | 4 6 8 9 | syl3anc | |- ( ( J e. ( TopOn ` X ) /\ A e. X ) -> ( ( nei ` J ) ` { A } ) e. ( Fil ` X ) ) |
| 11 | elflim | |- ( ( J e. ( TopOn ` X ) /\ ( ( nei ` J ) ` { A } ) e. ( Fil ` X ) ) -> ( A e. ( J fLim ( ( nei ` J ) ` { A } ) ) <-> ( A e. X /\ ( ( nei ` J ) ` { A } ) C_ ( ( nei ` J ) ` { A } ) ) ) ) |
|
| 12 | 10 11 | syldan | |- ( ( J e. ( TopOn ` X ) /\ A e. X ) -> ( A e. ( J fLim ( ( nei ` J ) ` { A } ) ) <-> ( A e. X /\ ( ( nei ` J ) ` { A } ) C_ ( ( nei ` J ) ` { A } ) ) ) ) |
| 13 | 3 12 | mpbird | |- ( ( J e. ( TopOn ` X ) /\ A e. X ) -> A e. ( J fLim ( ( nei ` J ) ` { A } ) ) ) |