This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A is divisible by B iff its negative is. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Fan Zheng, 7-Jun-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | negmod0 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐴 mod 𝐵 ) = 0 ↔ ( - 𝐴 mod 𝐵 ) = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rerpdivcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( 𝐴 / 𝐵 ) ∈ ℝ ) | |
| 2 | recn | ⊢ ( ( 𝐴 / 𝐵 ) ∈ ℝ → ( 𝐴 / 𝐵 ) ∈ ℂ ) | |
| 3 | znegclb | ⊢ ( ( 𝐴 / 𝐵 ) ∈ ℂ → ( ( 𝐴 / 𝐵 ) ∈ ℤ ↔ - ( 𝐴 / 𝐵 ) ∈ ℤ ) ) | |
| 4 | 1 2 3 | 3syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐴 / 𝐵 ) ∈ ℤ ↔ - ( 𝐴 / 𝐵 ) ∈ ℤ ) ) |
| 5 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 6 | 5 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → 𝐴 ∈ ℂ ) |
| 7 | rpcn | ⊢ ( 𝐵 ∈ ℝ+ → 𝐵 ∈ ℂ ) | |
| 8 | 7 | adantl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → 𝐵 ∈ ℂ ) |
| 9 | rpne0 | ⊢ ( 𝐵 ∈ ℝ+ → 𝐵 ≠ 0 ) | |
| 10 | 9 | adantl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → 𝐵 ≠ 0 ) |
| 11 | 6 8 10 | divnegd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → - ( 𝐴 / 𝐵 ) = ( - 𝐴 / 𝐵 ) ) |
| 12 | 11 | eleq1d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( - ( 𝐴 / 𝐵 ) ∈ ℤ ↔ ( - 𝐴 / 𝐵 ) ∈ ℤ ) ) |
| 13 | 4 12 | bitrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐴 / 𝐵 ) ∈ ℤ ↔ ( - 𝐴 / 𝐵 ) ∈ ℤ ) ) |
| 14 | mod0 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐴 mod 𝐵 ) = 0 ↔ ( 𝐴 / 𝐵 ) ∈ ℤ ) ) | |
| 15 | renegcl | ⊢ ( 𝐴 ∈ ℝ → - 𝐴 ∈ ℝ ) | |
| 16 | mod0 | ⊢ ( ( - 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( - 𝐴 mod 𝐵 ) = 0 ↔ ( - 𝐴 / 𝐵 ) ∈ ℤ ) ) | |
| 17 | 15 16 | sylan | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( - 𝐴 mod 𝐵 ) = 0 ↔ ( - 𝐴 / 𝐵 ) ∈ ℤ ) ) |
| 18 | 13 14 17 | 3bitr4d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ) → ( ( 𝐴 mod 𝐵 ) = 0 ↔ ( - 𝐴 mod 𝐵 ) = 0 ) ) |