This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A is divisible by B iff its negative is. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof shortened by Fan Zheng, 7-Jun-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | negmod0 | |- ( ( A e. RR /\ B e. RR+ ) -> ( ( A mod B ) = 0 <-> ( -u A mod B ) = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rerpdivcl | |- ( ( A e. RR /\ B e. RR+ ) -> ( A / B ) e. RR ) |
|
| 2 | recn | |- ( ( A / B ) e. RR -> ( A / B ) e. CC ) |
|
| 3 | znegclb | |- ( ( A / B ) e. CC -> ( ( A / B ) e. ZZ <-> -u ( A / B ) e. ZZ ) ) |
|
| 4 | 1 2 3 | 3syl | |- ( ( A e. RR /\ B e. RR+ ) -> ( ( A / B ) e. ZZ <-> -u ( A / B ) e. ZZ ) ) |
| 5 | recn | |- ( A e. RR -> A e. CC ) |
|
| 6 | 5 | adantr | |- ( ( A e. RR /\ B e. RR+ ) -> A e. CC ) |
| 7 | rpcn | |- ( B e. RR+ -> B e. CC ) |
|
| 8 | 7 | adantl | |- ( ( A e. RR /\ B e. RR+ ) -> B e. CC ) |
| 9 | rpne0 | |- ( B e. RR+ -> B =/= 0 ) |
|
| 10 | 9 | adantl | |- ( ( A e. RR /\ B e. RR+ ) -> B =/= 0 ) |
| 11 | 6 8 10 | divnegd | |- ( ( A e. RR /\ B e. RR+ ) -> -u ( A / B ) = ( -u A / B ) ) |
| 12 | 11 | eleq1d | |- ( ( A e. RR /\ B e. RR+ ) -> ( -u ( A / B ) e. ZZ <-> ( -u A / B ) e. ZZ ) ) |
| 13 | 4 12 | bitrd | |- ( ( A e. RR /\ B e. RR+ ) -> ( ( A / B ) e. ZZ <-> ( -u A / B ) e. ZZ ) ) |
| 14 | mod0 | |- ( ( A e. RR /\ B e. RR+ ) -> ( ( A mod B ) = 0 <-> ( A / B ) e. ZZ ) ) |
|
| 15 | renegcl | |- ( A e. RR -> -u A e. RR ) |
|
| 16 | mod0 | |- ( ( -u A e. RR /\ B e. RR+ ) -> ( ( -u A mod B ) = 0 <-> ( -u A / B ) e. ZZ ) ) |
|
| 17 | 15 16 | sylan | |- ( ( A e. RR /\ B e. RR+ ) -> ( ( -u A mod B ) = 0 <-> ( -u A / B ) e. ZZ ) ) |
| 18 | 13 14 17 | 3bitr4d | |- ( ( A e. RR /\ B e. RR+ ) -> ( ( A mod B ) = 0 <-> ( -u A mod B ) = 0 ) ) |