This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existential uniqueness of negatives. Theorem I.2 of Apostol p. 18. (Contributed by NM, 22-Nov-1994) (Proof shortened by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | negeu | |- ( ( A e. CC /\ B e. CC ) -> E! x e. CC ( A + x ) = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnegex | |- ( A e. CC -> E. y e. CC ( A + y ) = 0 ) |
|
| 2 | 1 | adantr | |- ( ( A e. CC /\ B e. CC ) -> E. y e. CC ( A + y ) = 0 ) |
| 3 | simpl | |- ( ( y e. CC /\ ( A + y ) = 0 ) -> y e. CC ) |
|
| 4 | simpr | |- ( ( A e. CC /\ B e. CC ) -> B e. CC ) |
|
| 5 | addcl | |- ( ( y e. CC /\ B e. CC ) -> ( y + B ) e. CC ) |
|
| 6 | 3 4 5 | syl2anr | |- ( ( ( A e. CC /\ B e. CC ) /\ ( y e. CC /\ ( A + y ) = 0 ) ) -> ( y + B ) e. CC ) |
| 7 | simplrr | |- ( ( ( ( A e. CC /\ B e. CC ) /\ ( y e. CC /\ ( A + y ) = 0 ) ) /\ x e. CC ) -> ( A + y ) = 0 ) |
|
| 8 | 7 | oveq1d | |- ( ( ( ( A e. CC /\ B e. CC ) /\ ( y e. CC /\ ( A + y ) = 0 ) ) /\ x e. CC ) -> ( ( A + y ) + B ) = ( 0 + B ) ) |
| 9 | simplll | |- ( ( ( ( A e. CC /\ B e. CC ) /\ ( y e. CC /\ ( A + y ) = 0 ) ) /\ x e. CC ) -> A e. CC ) |
|
| 10 | simplrl | |- ( ( ( ( A e. CC /\ B e. CC ) /\ ( y e. CC /\ ( A + y ) = 0 ) ) /\ x e. CC ) -> y e. CC ) |
|
| 11 | simpllr | |- ( ( ( ( A e. CC /\ B e. CC ) /\ ( y e. CC /\ ( A + y ) = 0 ) ) /\ x e. CC ) -> B e. CC ) |
|
| 12 | 9 10 11 | addassd | |- ( ( ( ( A e. CC /\ B e. CC ) /\ ( y e. CC /\ ( A + y ) = 0 ) ) /\ x e. CC ) -> ( ( A + y ) + B ) = ( A + ( y + B ) ) ) |
| 13 | 11 | addlidd | |- ( ( ( ( A e. CC /\ B e. CC ) /\ ( y e. CC /\ ( A + y ) = 0 ) ) /\ x e. CC ) -> ( 0 + B ) = B ) |
| 14 | 8 12 13 | 3eqtr3rd | |- ( ( ( ( A e. CC /\ B e. CC ) /\ ( y e. CC /\ ( A + y ) = 0 ) ) /\ x e. CC ) -> B = ( A + ( y + B ) ) ) |
| 15 | 14 | eqeq2d | |- ( ( ( ( A e. CC /\ B e. CC ) /\ ( y e. CC /\ ( A + y ) = 0 ) ) /\ x e. CC ) -> ( ( A + x ) = B <-> ( A + x ) = ( A + ( y + B ) ) ) ) |
| 16 | simpr | |- ( ( ( ( A e. CC /\ B e. CC ) /\ ( y e. CC /\ ( A + y ) = 0 ) ) /\ x e. CC ) -> x e. CC ) |
|
| 17 | 10 11 | addcld | |- ( ( ( ( A e. CC /\ B e. CC ) /\ ( y e. CC /\ ( A + y ) = 0 ) ) /\ x e. CC ) -> ( y + B ) e. CC ) |
| 18 | 9 16 17 | addcand | |- ( ( ( ( A e. CC /\ B e. CC ) /\ ( y e. CC /\ ( A + y ) = 0 ) ) /\ x e. CC ) -> ( ( A + x ) = ( A + ( y + B ) ) <-> x = ( y + B ) ) ) |
| 19 | 15 18 | bitrd | |- ( ( ( ( A e. CC /\ B e. CC ) /\ ( y e. CC /\ ( A + y ) = 0 ) ) /\ x e. CC ) -> ( ( A + x ) = B <-> x = ( y + B ) ) ) |
| 20 | 19 | ralrimiva | |- ( ( ( A e. CC /\ B e. CC ) /\ ( y e. CC /\ ( A + y ) = 0 ) ) -> A. x e. CC ( ( A + x ) = B <-> x = ( y + B ) ) ) |
| 21 | reu6i | |- ( ( ( y + B ) e. CC /\ A. x e. CC ( ( A + x ) = B <-> x = ( y + B ) ) ) -> E! x e. CC ( A + x ) = B ) |
|
| 22 | 6 20 21 | syl2anc | |- ( ( ( A e. CC /\ B e. CC ) /\ ( y e. CC /\ ( A + y ) = 0 ) ) -> E! x e. CC ( A + x ) = B ) |
| 23 | 2 22 | rexlimddv | |- ( ( A e. CC /\ B e. CC ) -> E! x e. CC ( A + x ) = B ) |